
Peer-to-peer networks for scalable grid landscapes in social
agent simulations

B.G.W. Craenen⋆

B.Craenen@napier.ac.uk

B. Paechter⋆

B.Paechter@napier.ac.uk
⋆Centre for Emergent Computing

Napier University
10 Colinton Road

EH10 5DT, Edinburgh

Abstract

Recently, peer-to-peer networks have been proposed as the underlying architecture of large scale dis-
tributed social agent simulations. A number of problems arise when grid landscapes are used to repre-
sent the landscape in these simulations, primarily because, in a peer-to-peer network, the landscape has
to be handled collectively by the nodes of the network. Two basic agent actions are identified as cen-
tral to these problems: look and move. A solution to these problems is provided in which the network
maintains a move-buffer and a look-index. Both solutions are configurable by the user of the simula-
tion and provide a trade-off between the scalability of the system, the consistency of the information
stored in the system, and the efficiency of the system.

1 Introduction

The size of the world that can be handled efficiently
by a social agent simulation run on a single computer
is restricted by the resources available on that com-
puter. By combining the resources of several com-
puters in a computer network, the efficient size of the
world can be increased. These simulations are called
distributed simulations. The architecture of the com-
puter network that underlies a distributed simulation
imposes restrictions on the efficiency of the simula-
tion. In the NewTies1 project, of which this paper
is part, we propose to use a peer-to-peer (P2P) net-
work as the underlying architecture for the simula-
tion, since they impose fewer restrictions on the effi-
cient size of the simulation. Social agent simulations
commonly use a grid to represent the landscape on
which the agents live. When an agent simulation is
implemented on a single computer, a grid landscape
is both straightforward and efficient to implement.
In a distributed simulation this is not necessarily the
case. Since a (pure) peer-to-peer network cannot have
a central server, it has to partition the landscape so
that it can be handled collectively by the nodes in the

1New and Emergent World-models Through Individual, Evo-
lutionary, and Social Learning (NEW TIES),http://www.
newties.org

network. Because the peer nodes may differ in local
configuration, processing speed, network bandwidth,
and storage capacity, the size of the partitions can
vary greatly, and can even dynamically change over
time when new nodes become available and other
nodes disappear. In this paper we discuss a solution
to the problems that arise when a grid landscape has
to be maintained in a peer-to-peer distributed social
agent simulation.

This paper is organised as follows: section 2 dis-
cusses peer-to-peer networks in more detail. In sec-
tion 3 we discuss how using a grid landscape in a
peer-to-peer distributed social agent simulation ne-
cessitates the partitioning of the landscape over the
nodes of the network and how this relates to the scal-
ability of the network, the consistency of the infor-
mation stored in the network, and the efficiency of
the simulation. Two basic agent actions are iden-
tified as central to these issues: the move- and the
look-action. In section 4 we discuss how the use of
a move-buffer solves the problems imposed by the
move-action. In section 5 we discuss how the use
of a look-index solves the problems imposed by the
look-action. The conclusions that can be draw from
this paper are summarised in section 6.



2 Peer-to-peer networks

A peer-to-peer computer network is any network that
does not rely on dedicated servers for communica-
tion but instead uses direct communication between
clients (peers). A pure peer-to-peer network does not
have the notion of clients or servers, but only peer
nodes with equal functionality that simultaneously
function as both clients and servers to the other nodes
of the network.

The peer-to-peer network architecture differs from
the client-server model in that in a client-server net-
work, communication is usually relayed by the server,
while in a peer-to-peer network, direct communica-
tion between the peers is the norm. A typical exam-
ple for client-server communication is email, where
the email is transmitted to the server for delivery,
transmitted to the destination between servers, and is
fetched later by the receiving client. In a client-server
network, direct transmission from a client to another
client is often impossible. Figure 1 shows a graphical
representation of a simple client-server network with
one server and four clients.

Server

Client

Client Client

Client

Figure 1: A client-server network

In a peer-to-peer network, any node is able to ini-
tiate or complete any supported transaction with any
other node. Peer nodes may differ in local configura-
tion, processing speed, network bandwidth, and stor-
age quantity. A graphical representation of a simple
peer-to-peer network is shown in figure 2.

There are two important properties of a peer-to-
peer network that are of relevance here: the band-
width of all peers can be fully used, and the network
is able to maintain scalability when the number of
nodes increases. This means that when the number
of nodes in the network increases, the total available

Peer

PeerPeer

Peer Peer

Figure 2: A peer-to-peer network

bandwidth also increases. In a client-server network,
all clients have to share the (limited) bandwidth of
the server, so that having a larger number of clients
actually means slower data transfer.

Technically, a pure peer-to-peer application must
implement only peer protocols that do not recognise
the concepts of “server” and “client”. Such pure
peer applications and networks are rare. Most net-
works and applications described as peer-to-peer ac-
tually contain or rely on some non-peer elements,
such as the Domain Name System (DNS) of the Inter-
net, which translates the IP-addresses of all comput-
ers connected to it into a human-readable hostname.
Also, real-world peer-to-peer applications often use
multiple protocols and act as client, server, and peer
simultaneously, or over time. Many peer-to-peer sys-
tems use stronger peers (super-peers or super-nodes)
as servers to which client-peers are connected in a
star like fashion. The inherent scalability of peer-
to-peer networks and their ability to collectively use
all available bandwidth has attracted a great deal of
attention to their application from computer science
research. The advantages of peer-to-peer networks
make them an interesting alternative underlying ar-
chitecture for large scale distributed social agent sim-
ulations. The complexity of an social agent simula-
tion increases with the scale of the simulation and for
the simulation of some problems, large scale simula-
tions are required. The resource need of these simu-
lations surpasses the resources available from a nor-
mal single computer and either the use of a super-
computer or distributing the simulation over a com-
puter network has to be considered. The acquisition
and/or use of a super-computer, however, is expen-
sive, whereas distributing the simulation over a com-



puter network allows for the use of a range of rela-
tively cheap computers, from resource rich desktop
computers to the lowly PDA. Peer-to-peer networks
allow for simulations of a scale relative to the num-
ber of nodes in the network but do not require the use
of fast and/or bandwidth rich servers. In fact, peer-
to-peer networks have been used to utilise unused re-
sources on computers all over the Internet, much like
in the SETI@home project (see Korpela et al. (2001)
and Anderson et al. (2002) for more information). Al-
though peer-to-peer networks are well-suited to han-
dle large scale distributed simulations, they also pose
some problems of the own.

For one, all distributed simulations must assume
at least some level of unreliability in the availability
of the resources in the network. Computer networks,
however they are organised, consist of a collection of
computers, and computers can become unavailable,
can be removed from the network by the user, or can
even fail. Although in modern computers and com-
puter networks the failure-rate is small, if the number
of computers in the network is large enough or the du-
ration of the simulation long enough, some resource-
or information-loss has to be expected. Several mech-
anisms have been proposed to limit the amount of un-
certainty to which the simulation is exposed to, but all
these have an adverse effect on the efficiency of the
system. In general, we have to assume that a certain
level of unreliability in the simulation is acceptable.
This is summarised as theunreliability assumption.

3 Scalable grid landscapes and
P2P networks

A grid landscape is a set of locations connected to
each other so that together they form a grid pattern.
A grid landscape is a convenient abstraction of the
real-world and it is easy to implement and handle by
a simulation run on a single computer. When a so-
cial agent simulation is distributed over a peer-to-peer
computer network however, a grid landscape intro-
duces a number of problems that are not apparent in
a single computer implementation. Most, if not all,
of these problems arise from the fact that the land-
scape has to be partitioned over the nodes of the peer-
to-peer network. Partitioning is necessary since in
a peer-to-peer network a server to handle this infor-
mation centrally is not allowed: the landscape has to
be handled collectively by the peer nodes of the net-
work. In practise, partitioning the landscape means
that each node in the peer-to-peer network is assigned
a collection of locations that it will handle. Although

it is convenient to think of these collections as clus-
ters in the landscape, in practice, this might not be
the most efficient assignment. In fact, in this paper
we make no assumption about how the landscape is
partitioned over the nodes of the network but instead
we simply state that there exist several efficient meth-
ods for partitioning the landscape. These methods are
oftenself-organising in order to maintain (at least an
approximation of) the most efficient partitioning of
the landscape (see Clarke et al. (2001) for more infor-
mation). This means that they change the partitioning
of the landscape dynamically during the run of the
simulation in order, for example, to reflect changes in
the network. This implies that the collection of loca-
tions handled by a single node in the network changes
over time. This paper focusses on the problem of how
to maintain scalability and consistency during the run
of the simulation without adversely affecting the effi-
ciency of the simulation too much.

3.1 Efficiency

The efficiency of a social agent simulation imple-
mented on a peer-to-peer network depends to a large
extent on the efficiency with which the underlying
network can supply information that is needed. Envi-
ronment information is requested frequently and re-
quests — or queries — for landscape information
have to be handled efficiency. In peer-to-peer terms,
this means that the peer-to-peer network has to handle
landscape informationdiscovery efficiently. Query
efficiency is measured by measuring the response-
time, that is, the amount of time it takes between an
issue of a query and the return of the requested in-
formation. In order to reduce query response-times,
peer-to-peer networks useinformation indexing, a
technique borrowed from database management sys-
tems (see Dabek et al. (2001) for more information
on how information indexing is used with Chord). In-
dexing implies the generation and maintenance of re-
dundant (meta) information, in order to more quickly
locate pieces of information stored in the system. In
peer-to-peer networks, indexing is used for two rea-
sons: increasing network efficiency and increasing
information discovery efficiency. An example of the
first kind of indexing is maintaining a node-address
index in order to speed-up direct communication be-
tween nodes. An example of the second kind of in-
dexing is the maintenance of an index about certain
kinds of information stored in the network in order
to speed-up queries about this information. A bal-
ance has to be struck between the cost of maintaining
the index and the speed-up it allows. For more in-



formation on how to improve data access in peer-to-
peer systems and the use of indexing see Aberer et al.
(2002).

3.2 Scalability

The scalability of the system indicates the capabil-
ity of a system to increase performance under an in-
creased load when resources are added. Scalability
is a highly significant issue in databases, routers, net-
working, etc. A system whose performance improves
proportionally to the amount of resources added to
it, is said to be a scalable system. For a peer-to-peer
network to be scalable the performance of the overall
network has to increase proportionally to the com-
bined resources of the nodes that are added to the
network. Depending on the algorithm, peer-to-peer
networks are considered to be inherently scalable, al-
though they can be less so when the overhead im-
posed by the network, outweighs the resource addi-
tion to the network. In order to maintain a scalable
peer-to-peer network, it is imperative that the over-
head needed for maintaining the network is also scal-
able.

All computer networks, however they are struc-
tured, impose some amount of overhead to keep them
functioning (efficiently). An example of the over-
head imposed for maintaining a peer-to-peer network
is the information needed to set up the direct commu-
nication between nodes (see Rowstron and Druschel
(2003) for an example of how this can be done). In-
dexing the location of the nodes in the network is a
common technique for maintaining this information
efficiently (see previous section for more information
about efficiency and indexing). As the number of
nodes of a network increase however, there exists the
possibility that the overhead of the system becomes
so extensive, that to simply maintain it will take up all
the newly added resources of an added node. There-
fore, to allow for truly large peer-to-peer networks,
the amount of overhead required to maintain them has
to be minimised.

3.3 Consistency

For any simulation to provide reliable results, the
consistency of the information needed to run the sim-
ulation is of paramount importance. Theunreliabil-
ity assumption already states that some inconsistency
has to be tolerated when a simulation is distributed
over a computer network. A peer-to-peer network
itself, however, can create inconsistencies in the in-
formation stored on it. In order to explain this we

have to look at how a peer-to-peer network stores in-
formation. We have already explained that a peer-
to-peer network has to distribute or partition the in-
formation stored on it over its nodes. What we have
not explained is how this is done. Information stored
on a peer-to-peer network will normally propagate
through the network until such time as the partition-
ing technique used determines where it will be stored
(see Druschel and Rowstron (2001) and Jelasity et al.
(2002) for more information). This propagation of
information is done both as a load-balancing tech-
nique, i.e. making sure that the information “load”
of each node is proportional to the resources available
by that node, and as a way of determining if the newly
available information is inconsistent with information
already stored in the network. Load-balancing in a
peer-to-peer network is done as part of the partition-
ing technique.

In a peer-to-peer distributed social agent simula-
tion, in order to increase the scalability of the sys-
tem, information about the landscape should be main-
tained as sparsely as possible. Only landscape loca-
tions that are needed should be maintained and the
locations themselves should be created only when
they are needed. In a peer-to-peer distributed social
agent simulation, landscape information inconsisten-
cies can occur whenever a new location of the land-
scape is created. This is because it is possible to
create a location on one node that has already been
created (or is created at the same time) on another.
The underlying peer-to-peer network has to be able
to handle these kinds of inconsistencies, for example,
by keeping the earlier created location and dispensing
with the newly created location. However, it has to
first be aware that these inconsistencies exist, hence
the need to propagate information about location cre-
ation through the network.

Propagation of information through a peer-to-peer
network and the subsequent handling of any possible
inconsistencies takes time. In some cases, the simu-
lation itself is robust to some level of inconsistency
of information, reducing the need handle the incon-
sistencies quickly. In other cases, inconsistent infor-
mation can have serious consequences, placing more
stringent requirements on the capabilities of the peer-
to-peer network. In general however, the ability of the
peer-to-peer network to handle inconsistencies incurs
some overhead on the network and a balance between
the efficiency and scalability of the system on the one
hand and the ability to handle inconsistencies has to
be found.

Just as with theunreliability assumption, anincon-
sistency assumption can be formulated, that is, a dis-



tributed system in which the information stored on it
is totally consistent can only be created at great cost
to the efficiency and/or scalability of the system. As
such, any distributed system assumes that a certain
level of inconsistency of information is inevitable and
that the system has to deal with those inconsistencies
accordingly. The unreliability and the inconsistency
assumptions also have consequences for experiments
that can be run on a distributed system, in that exper-
iments in which completely consistent information is
required cannot be run.

3.4 The move- and look-action

The delicate balance that has to be struck between
scalability, consistency and efficiency in a peer-to-
peer distributed social agent simulation involves two
basic actions that an agent in a simulation can take:
move and look. Most other actions, at least from an
information requirement perspective, can be seen as
variations on these two actions and they can be han-
dled analogously to them.

The move-action allows an agent to move from one
location in the landscape to another. In order to limit
the amount of landscape information needed by the
simulation, and thereby increasing the scalability of
the system, the landscape should be maintained as
sparsely as possible: only the locations needed are
created and only the locations already created are
stored. The move-action is important for the peer-to-
peer network because when an agent moves to a new
location — one that has not been created yet — the
simulation has to create one for it. When two nodes in
the peer-to-peer network need to create the same loca-
tion at the same time, this can lead to inconsistency in
the network. Handling the inconsistency at this time
is complex and can include backtracking to an earlier
state of the system or even the removal of an agent or
other movable object from the simulation. We solve
this problem through the use of a buffer-zone of loca-
tions around agents and other movable objects.

The look-action provides the agent with the per-
ceptual information it needs to decide on the actions
it is going to undertake. A look-action can be a con-
scious action for the agent to take but social agent
simulations in which this information is given with-
out a agent having to explicitly do a look-action ex-
ist as well. A look-action results in a number of in-
formation queries on the locations that the agent can
see. Commonly, the number of locations visible to
an agent is determined by alook-distance parameter
and alook-direction of the agent. Together, they de-
fine alook-arc of locations visible to the agent. Since

agents look often and sometimes can look far, the ac-
tion produces a large amount of queries that all have
to be handled efficiently. A query in a peer-to-peer
network is handled by propagating it through the net-
work. Each node with relevant information then par-
ticipates towards resolving the query. In a peer-to-
peer network without complete information, a query
that can not be resolved takes a long time to fail, since
it has to propagate throughout the whole network. In
small peer-to-peer networks, the response-time, and
thus the efficiency of the system, will be reasonable,
but with the addition of more nodes, the system can
become more and more inefficient. This straightfor-
ward implementation obviously is not scalable to a
large peer-to-peer network. In this paper, we propose
an alternative implementation involving predictive in-
dexing of locations, so that the queries resulting from
a look-action can be handled efficiently by the system
without adversely affecting its scalability.

4 The move-buffer

The move-buffer should be seen as a buffer-zone
around the locations in the landscape that are or have
been used by the agents in the simulation. The buffer-
zone is used as a means to ensure that consistency of
information is maintained during the run of the sim-
ulation. Instead of creating locations at the moment
when an agent wants to move to them, we create a
buffer-zone of locations around all the locations that
the agents or other movable objects have used before
or are using now, so that in the case that the agents
want to move into the buffer-zone, the locations are
already created and the information about these loca-
tions is consistent throughout the network. The infor-
mation about the locations in the buffer-zone can be
propagated through the network so that the peer-to-
peer network can handle any inconsistencies before
an agent moves onto them.

An example of how an inconsistency can be
avoided by using buffer-zones is when two agents
on two landscape islands, handled by two nodes in
the network, start moving toward each other. Each
time one of the agents moves onto a location in the
buffer-zone, the buffer-zone is extended in such a
way that a certain, user-defined, distance around the
agents is covered by the buffer-zone. At some point,
the buffers of both nodes will include some of the
same locations. At this point, an inconsistency can
occur when two nodes try to create the same loca-
tion at the same time. This inconsistency can be
resolved by choosing one node to handle the loca-
tion, and copying over information to the other node.



However, while the inconsistency is being resolved,
the agents may keep moving. The buffer-zone has to
cover enough locations around the agents so that the
network has enough time to handle any inconsisten-
cies that can occur before the locations in the buffer-
zone are needed by the simulation.

Figure 3 shows an example of how the move-buffer
is used. The small solid circles, like the one at coordi-
nate〈D, 5〉, indicate a location in the landscape that
has been created and used by agents in the simula-
tion. The small dashed circles, like the one at coor-
dinate〈D, 6〉, indicate a location in the move-buffer.
The twoX-s at coordinates〈E, 4〉 and〈J, 4〉 in the
top diagram and〈E, 4〉 and 〈I, 4〉 in the bottom di-
agram indicate two agents, agentX on the left and
agentY on the right. The simulation is partitioned
over two nodes at the line in the middle of the two
diagrams. The large thin circle indicates the buffer-
zone around the agents. In the bottom diagram, agent
Y has moved from coordinate〈J, 4〉 to coordinate
〈I, 4〉. The buffer-zone is extended with the locations
at 〈I, 2〉, 〈I, 6〉, 〈H, 3〉, 〈H, 5〉, and 〈G, 4〉. How-
ever, the location at coordinate〈G, 4〉 is already in
the buffer-zone of node1, so there is a possibility that
its creation has caused an inconsistency. This incon-
sistency has to be handled by the network, for exam-
ple, by copying the information about location〈G, 4〉
stored on node1 over the information stored on node
2. Because the buffer-zone has a radius of two loca-
tions, the time allowed to the network for handling
the information inconsistency is the same as the time
it takes for the agents to make two moves towards
each other.

The distance covered by the move-buffer is con-
figurable for each experiment but should take two
things into account: the size of the peer-to-peer net-
work, and the level of inconsistency that the simula-
tion can tolerate. The larger the network, the longer it
takes for landscape information to propagate through
it. When a inconsistency occurs, the time needed
to propagate this message back also has to be taken
into account. Some simulations are more robust to
inconsistencies than others. In some, the landscape
information does not have to be exact all the time.
These simulations do not require an extensive buffer-
zone. Other simulations however do require nearly
exact knowledge about the environment, and then, the
distance that their buffer-zone should cover, needs to
be quite large. Since the move-buffer is part of the
overhead of the system, the radius of the move-buffer
has an effect on the scalability of the simulation. A
larger buffer-zone means more information has to be
propagated through, and stored on, the network and

6

7

L

1

2

3

4

5

A B C D E F G H JI K M N

6

7

L

1

2

3

4

5

A B C D E F G H JI K M N

Agent Agent
X Y

Node 1 Node 2

Node 1 Node 2Agent Y
Moved

Inconsistency
Possible

Figure 3: Move-buffer example

so more resources are needed to maintain this infor-
mation. This becomes clear when we consider an ex-
treme case, that is, when all possible locations in the
landscape are in the buffer-zone at initialisation of the
simulation. This will cause instantiation of the whole
landscape, which depending on the maximum size of
the landscape, could make the resource requirements
of the network so large that it becomes impractical.

The distance that the buffer-zone covers therefore,
should be configurable by the user of the simulation,
because only the user can make an assessment of
what kind of network is available, and what amount
of inconsistency is acceptable. An interesting re-
search question is how to assess and/or maintain the
distance that the buffer-zone covers without user in-
put.

5 The look-index

With the look-action, the efficiency of the system is
the more important issue. When a peer-to-peer net-
work has to handle a query it is resolved by propa-
gating it through the network so that each node can
provide information in order to resolve it. When the
peer-to-peer network is large, it is possible that such a
query will take a long time to resolve, thereby lower-
ing the response-time of the system and thus its effi-
ciency. When the query can not be resolved at all, for
example when the necessary information to resolve it
is not available in the network, the query has to prop-
agate through the whole network and back, before its



failure can be reported. The worst-case response-time
of a query for information in a peer-to-peer network
is therefore proportional to the size of the network.

We assume that the queries resulting from a look-
action occur often during the run of the simulation.
As the landscape is stored as sparsely as possible,
there will be (possibly large) portions of the land-
scape that have not been created yet. The agents in
the simulation, however, might still want to look at
these portions of the landscape, and since this land-
scape information is unavailable in the network, we
must assume that a (possibly large) number of queries
will consequently fail. As a result, the efficiency of
a simulation will be adversely affected. In an effort
to increase the efficiency of the peer-to-peer network,
we propose to index information about the landscape.
If a large enough portion of the landscape is indexed,
all the information needed for a query should be avail-
able in thelook-index.

In the look-index, we index the locations that the
agents might want to look at. This implies that some
level of prediction of where the agents might want to
look is possible. The index is generated by adding
either an empty entry to the index for locations that
have not yet been created or used, or the address of
the node where the location is handled if it has been
created or used. Instead of propagating information
about the location through the network, we propagate
only the newly created index entries through the net-
work. The node in the network that handles the loca-
tion then sends back its address to the node that sent
the index entry. When an agent does a look-action,
before any queries are sent through the network, the
simulation first inspects the index. If the location cor-
responds to an empty index entry in the index, the
network knows that the location has not been created
yet and no query is issued for that location. If the
location corresponds to a non-empty index entry, the
network can use the node-address to set-up a direct
network connection to retrieve the information about
the location efficiently.

The look-index is maintained so that the informa-
tion that a query can request is complete, in order to
make sure that no query can fail. The size of the look-
index is a trade-off between the efficiency of the sim-
ulation and its scalability. This is best explained by
looking at the two extremes of the extent of the look-
index. On the one hand, the look-index can extend
over the whole possible landscape. This will pro-
vide complete information about the whole landscape
but also means that the whole landscape needs to be
indexed on every node of the simulation. Maintain-
ing an index of the whole landscape on every node is

clearly not a scalable solution, especially when large
landscapes are used. The other extreme is to maintain
no index at all. Although this certainly is a scalable
solution, the efficiency of the simulation will suffer
as a large portion of the queries issued to the network
will probably fail and will take a long time do so.

The ideal extent of the index lies somewhere in be-
tween these two extremes and must be set by the user
of the simulation, as only the user is able to estimate
how much incomplete information is allowable and
how scalable the network has to be. As a rule of
thumb, however, we suggest that the look-index ex-
tends a few locations farther that the distance that the
agents can look. The extra extent beyond the look-
distance allows the peer-to-peer network some time to
propagate the index entries through the network and
also so that when two entries about the same location
are created in separate parts of the network, the net-
work can validate that the two index entries do not
contain conflicting information.

6 Conclusions

In this paper we identified that when a grid landscape
is used as a landscape representation in a peer-to-peer
distributed social agent simulation, the scalability, in-
formation consistency, and efficiency of the simula-
tion can be adversely affected when a naive imple-
mentation is used. Based on two basic agent actions
— move and look — we demonstrate that a trade-off
between these properties is possible when grid loca-
tions in the landscape are included in a buffer-zone,
in the case of the move-action, or indexed, in the case
of the look-action. The extents of the buffer-zone and
the index should be set by the user of the simulation,
since only the user can have full knowledge of the
size of the network and the amount of inconsistency
that is acceptable. Future research includes develop-
ing methods to estimate both parameters, either by
providing an estimation at initialisation or by adjust-
ing the parameters during the simulation itself.

Acknowledgements

The NewTies project is partially supported by the Eu-
ropean Commission Framework 6 Future and Emerg-
ing Technologies programme under contract 003752.
Opinions are the authors’ own and do not represent
those of the Commission. The ideas in this paper have
greatly benefited from interaction with the partners
in the project (Vereniging voor Christelijk Weten-
schappelijk Onderwijs; Ëotvös Loŕand University;



Napier University; University of Surrey and Stichting
Katholieke Universiteit Brabant).

References

Karl Aberer, Manfred Hauswirth, Magdalena
Punceva, and Roman Schmidt. Improving data
access in p2p systems.IEEE Internet Computing,
6(1), Jan/Feb 2002.

D. Anderson, J. Cobb, E. Korpela, M. Lebofsky,
and D Werthimer. Seti@home: an experiment in
public-resource computing.Communications of
the ACM, 45(11):56–61, 2002.

I. Clarke, O. Sandbarg, B. Wiley, and T.W. Hong.
Freenet: A distributed anonymous information
storage and retrieval system. In H. Federrath,
editor, Designing Privacy Enhancing Technolo-
gies: International Workshop on Design Issues
in Anonymity and Unobservability, volume 2009
of Lecture Notes on Computer Science. Springer:
New York, 2001.

F. Dabek, E. Brunskill, F. Kaashoek, D. Karger,
R. Morris, I. Stoica, and H. Balakrishnan. Build-
ing peer-to-peer systems with chord, a distributed
lookup service. InProceedings of the 8th Work-
shop on Hot Topics in Operating Systems (HOTOS-
VIII), 2001.

Peter Druschel and Antony Rowstron. Past: Persis-
tent and anonymous storage in a peer-to-peer net-
working environment. InProceedings of the 8th
IEEE Workshop on Hot Topics in Operating Sys-
tems (HotOS VIII), pages 65–70. Schloss Elmau,
Germany, May 2001.

M. Jelasity, M. Preuß, and B Paechter. Maintaining
connectivity in a scalable and robust distributed en-
vironment. InProceedings of the IEEE Interna-
tional Symposium on Cluster Computing and the
Grid, page 389, 2002.

E. Korpela, D. Werthimer, D. Anderson, J. Cobb, and
M Lebofsky. Seti@home — massively distributed
computing for seti.IEEE Computational Science
and Engineering, 3(1):78–83, Jan/Feb 2001.

Antony Rowstron and Peter Druschel. Pastry: Scal-
able, decentralized object location, and routing for
large-scale peer-to-peer systems.Lecture Notes in
Computer Science, 2218(2001):329, Jun 2003.


