
Solving Constraint Satisfaction Problems withHeuristic-based Evolutionary AlgorithmsB.G.W. Craenen A.E. Eiben E. MarchioriLIACS, Leiden UniversityAbstractEvolutionary algorithms (EAs) for solving constraint satisfaction prob-lems (CSPs) can be roughly divided into two classes: EAs using adaptive�tness functions and EAs using heuristics. In [5] the most e�ective EAs of the�rst class have been compared experimentally using a large set of benchmarkinstances consisting of randomly generated binary CSPs. In this paper wecomplete this comparison by studying the most e�ective EAs that use heuris-tics. We test three heuristic based EAs on the same benchmark instancesused in [5]. The results of our experiments indicate that the three heuristicbased EAs have similar performance on random binary CSPs. Moreover,comparing these results with those in [5], we are able to identify the best EAfor binary CSPs as the algorithm introduced in [2] which uses a heuristic aswell as an adaptive �tness function.1 IntroductionConstraint satisfaction is a fundamental topic in arti�cial intelligence with rele-vant applications in planning, default reasoning, scheduling, etc. Informally, aconstraint satisfaction problem (CSP) consists of �nding an assignment of valuesto variables in such a way that the restrictions imposed by the constraints aresatis�ed. CSPs are, in general, computationally intractable (NP-hard) and thealgorithms that solve them can be divided into two classes: the ones that are tai-lored to solve a speci�c CSP and the ones that use `rules-of-thumb' or heuristicsto solve them. Although heuristics do not guarantee successful performance, theyare able to produce an answer in a very short time and are used to guide thealgorithm through the search space. Evolutionary algorithms (EAs) for CSPs canbe divided into two classes: EAs using adaptive �tness functions ([1, 2, 7, 10]) andEAs using heuristics ([6, 9, 11]). In [5], an experimental comparison of EAs ofthe �rst class was done using a test suite consisting of randomly generated binaryCSPs. In this paper we perform a comparative study on three EAs of the secondclass ([6, 9, 11]) using the same benchmark instances as in [5]. Although a largenumber of experiments were done, they do not indicate which algorithm has thebest performance: one algorithm has better performance on some classes of in-stances, another on other classes. However, when considering the results from [5],the best EA for random binary CSPs is the algorithm by Dozier et al. [2, 3] whichuses a heuristic as well as an adaptive �tness function. This seems to indicate thatboth the adaptive operators as well as heuristics are required for an e�ective EA



for solving binary CSPs. The paper is organized as follows. Section 2 containsthe de�nition of CSPs. In Section 3 we describe the main features of the threeheuristic based EAs we intend to compare. Section 4 presents the results of theexperiments. Finally, in Section 5 we conclude with a discussion of the results.2 Random Binary CSPs over Finite DomainsWe consider binary CSPs over �nite domains, where constraints act between pairsof variables. This is not restrictive since every CSP can be transformed intoan equivalent binary CSP (c.f. [13]). A binary CSP is a triple (V;D; C) whereV = fv1; : : : ; vng is a set of variables, D = (D1; : : : ; Dn) is a sequence of �nitedomains, such that vi takes value from Di, and C is a set of binary constraints.A binary constraint cij is a subset of the cartesian product Di � Dj consistingof the compatible pairs of values for (vi; vj). In the sequel, we shall often usethe incompatible pairs of values when dealing with constraints, like, e.g., in thegenerator of random binary CSPs. For simplicity we assume all domains equal(Di = D for i 2 f1; ng). An instantiation � is a mapping � : V ! D, where�(vi) is the value associated to vi. A solution � of a CSP is an instantiation suchthat (�(vi); �(vj)) is in cij , for every vi; vj in V with i 6= j. A class of randombinary CSPs can be speci�ed by four parameters hn;m; d; ti with n the numberof variables, m the (uniform) domain size, d the constraint density and t theconstraint tightness . Constraint density is the probability of a constraint betweentwo variables,while constraint tightness is the probability of con
ict between twovalues. When the density or the tightness is varied, CSPs exhibit a phase transitionwhere problems change from being relatively easy to solve to being very easy toprove unsolvable. Problems in the phase transition are identi�ed as the mostdi�cult to solve or prove unsatis�able (cf., e.g., [12]). The test suite used for theexperiments consists of problem instances produced by a generator1 loosely basedon the generator of G. Dozier [1, 3]. The generator produces a CSP by assigningn(n�1)2 � d constraints between two randomly selected variables (vi and vj) andthen assigning jDij � jDj j � t con
icts to the constraint.3 Heuristic EAs for CSPsWe consider three heuristic based EAs: ESP-GA by E. Marchiori [9], H-GA byEiben et al.[6] and Arc-GA by M. C. Ri� Rojas [11]. The three EAs were selectedbecause of their di�erent use of heuristics: ESP-GA uses heuristics in a repair rulecombined with blind genetic operators, H-GA uses heuristics in its genetic operatorsand Arc-GA uses heuristics guided by the constraint network in two novel geneticoperators and a new �tness function. All algorithms use the integer representation:an individual is a sequence of integers where integer p in the i-th entry indicatesthat the i-th variable is set to value p.1see http://www.wi.leidenuniv.nl/home/jvhemert/csp-ea/



3.1 ESP-GAIn [9], E. Marchiori introduces an EA for solving CSPs which adjusts the CSP insuch a way that there is only one single (type of) primitive constraint. By decom-posing more complex constraints into primitive ones, the resulting constraints havethe same granularity and therefore the same intrinsic di�culty. This rewriting ofconstraints, called constraint processing , is done in two steps: elimination of func-tional constraints and decomposition into constraints of a single canonical form.These primitive constraints are linear inequalities of the form: � � vi � � � vj 6= 
.When all constraints share the same form a single repair rule can be used toenforce dependency propagation. The repair of an individual is done locally byapplying the repair rule to every violated constraint. The repair rule of the formif � �pi�� �pj = 
 then modify pi or pj is applied to all individuals in the popu-lation. In the repair rule we select the variable which occurs in the largest numberof constraints, and set its value to a new value in the domain of that variable. Theviolated constraints to be repaired are selected in a random order. The representa-tion of the constraints as generated by the CSP generator is a table of incompatiblevalues. ESP-GA, on the other hand, was devised with the implicit assumption thatthe CSP is syntactically by means of a formula. Therefore we translate the tablesof the CSP generator into constraints of the form � � vi � � � vj 6= 
, by setting
 = jDj j�pi�pj (with pi; pj the values of vi; vj) and � = jDj j and � = 1. Violationof such a constraint is detected by entering the values of the speci�ed variablesand checking if the result is the calculated 
-value. The above mentioned trans-lation produces constraints in canonical form, hence the constraint processing ofESP-GA becomes unnecessary. This reduces ESP-GA to an EA with a repair rule.The genetic operators we use are de�ned as follows. The crossover operator is thestandard one-point crossover: a randomly chosen position divides each parents intwo parts. The two children are constructed by taking the one part from the �rst(respectively second) parent and the other part from the second (respectively �rst)parent. The mutation is the random mutation which set the value of a randomlychosen variable to a randomly selected value from its domain. The main featuresof ESP-GA are summarized in Table 1.Crossover operator One-point crossoverMutation operator Random mutationFitness function Number of violated constraintsExtra Repair ruleTable 1: Speci�c features of ESP-GA3.2 H-GAIn [6], Eiben et al. propose to incorporate existing CSP heuristics into genetic op-erators operators. Two heuristic operators are speci�ed: an asexual operator thattransforms one individual into a new one and a multi-parent operator that intro-duces a new individual based on two or more parents. In the next two subsections



we will discuss both heuristic operators in more detail.3.2.1 Asexual heuristic operatorThe asexual heuristic operator selects a number of variables in a given individual,and then selects new values for these variables. We consider the operator thatchanges up to one fourth of the variables, selects the variables that are involved inthe largest number of violated constraints, and selects the values for these variableswhich maximize the number of constraints that become satis�ed.3.2.2 Multi-parent heuristic crossoverThe basic mechanism of this crossover operator is scanning:for each position, thevalues of the variables of the parents in that position are used to determine thevalue of the variable in that position in the child. The selection of the value isdone using the heuristic employed in the asexual operator. The di�erence withthe asexual heuristic operator is that the heuristic does not evaluate all possiblevalues but only those of the variables in the parents. The multi-parent crossoveris applied with 5 parents and produces one child.Version 1 Version 2 Version 3Main operator Asexual Multi-parent Multi-parentheuristic heuristic heuristicoperator crossover crossoverSecondary operator Random Random Asexualmutation mutation heuristicoperatorFitness function Number of violated constraintsExtra NoneTable 2: Speci�c features of the three implemented versions of H-GAWe consider three EAs based on this approach, and call them H-GA.1, H-GA.2,and H-GA.3. As seen in Table 2, we use the asexual heuristic operator in a doublerole. In the H-GA.1 version it serves as the main search operator assisted by(random) mutation. In H-GA.3 it accompanies the multi-parent crossover in a rolewhich is normally �lled in by mutation. The same random mutation operator usedin ESP-GA is used in H-GA.1 and H-GA.2.3.3 Arc-GAIn [11] M. C. Ri� Rojas introduces a EA for solving CSPs which informationabout the constraint network in the �tness function and in the genetic operators(crossover and mutation). The �tness function is based on the notion of errorevaluation of a constraint. The error evaluation of a constraint is the sum of num-ber of variables of the constraint2 and the number of variables that are connected2In a binary CSP there are just two variables



to those variables in the CSP network. The �tness function of an individual,called arc-�tness, is the sum of error evaluations of all the violated constraintsin the individual. The mutation operator, called arc-mutation, selects randomlya variable of an individual and assign to that variable the value that minimizesthe sum of the error-evaluations of the constraints involving that variable. Thecrossover operator, called arc-crossover, selects randomly two parents and build achild by means of an iterative procedure over all the constraints of the consideredCSP. Constraints are ordered according to their error-evaluation with respect toinstantiations of the variables that violate the constraints. For the two variablesof a selected constraint c, say vi; vj , the following cases are distinguished. If noneof the two variables are instantiated yet in the o�spring under construction, andnone of the parents satis�es c, then a combination of values for vi; vj from theparents is selected which minimizes the sum of the error evaluations of the con-straints containing vi or vj whose other variables are already instantiated in theo�spring. If there is one parent which satis�es c, then that parent supplies thevalue for the child. If both parents satisfy c, then the parent which has the higher�tness provides its values for vi; vj . If only one variable, say vi, is not instantiatedin the o�spring under construction, then the value for vi is selected from the par-ent minimizing the sum of the error-evaluations of the constraints involving vi. Ifboth variables are instantiated in the o�spring under construction, then the nextconstraint (in the ordering described above) is selected.Crossover operator Arc-crossover operatorMutation operator Arc-mutation operatorFitness function Arc-�tnessExtra NoneTable 3: Speci�c features of Arc-GA4 Experimental ComparisonAll three algorithms use a steady state model with a population of 10 individuals.The choice of such a small population is justi�ed by computational testing. Pergeneration two new individuals are created using the crossover or main operator,both new individuals are mutated. Linear ranking with bias b = 1:5 is used as par-ent selection while the elitist replacement strategy removes the two individuals inthe population that have the lowest �tness. The results in table 4 are obtained bytesting the three methods (�ve algorithms) on binary CSPs with 15 variables anda uniform domain size of 15. We generate 25 classes of instances by consideringthe combinations of 5 di�erent constraints tightness and 5 di�erent density values.In each class 10 instances are generated and 10 independent runs are performedon each instance, the results for each class are the averages over 100 runs. All thealgorithms stop if they �nd a solution or after a maximum of 100; 000 �tness eval-uations. In order to compare the algorithms, two performance measures are used:the percentage of runs that found a solution, the success rate (SR), and the aver-



age number of �tness evaluations to solution (AES)3 in successful runs4. Entriesin boldface are used to highlight the best result for the considered class of CSPs.Table 4 gives some indication of the landscape of solvability for the di�erent EAs.den- alg tightnesssity 0.1 0.3 0.5 0.7 0.9ESP-GA 1 (i) 1 (23) 1 (78) 0.91 (600) 0.45 (13559)H-GA.1 1 (11) 1 (54) 1 (169) 1 (643) 0.72 (10419)0.1 H-GA.2 1 (12) 1 (88) 1 (315) 1 (1325) 0.61 (15254)H-GA.3 1 (i) 1 (23) 1 (53) 1 (484) 0.64 (14752)Arc-GA 1 (i) 1 (32) 1 (79) 0.99 (211) 0.27 (14131)ESP-GA 1 (23) 1 (132) 0.91 (5699) 0.01 (8366) 0 ()H-GA.1 1 (50) 1 (441) 1 (4481) 0.02 (69632) 0 ()0.3 H-GA.2 1 (70) 1 (704) 1 (4921) 0.05 (22954) 0 ()H-GA.3 1 (26) 1 (119) 0.97 (3587) 0 () 0 ()Arc-GA 1 (33) 1 (175) 0.91 (617) 0.02 (25802) 0 ()ESP-GA 1 (36) 1 (891) 0.19 (4371) 0 () 0 ()H-GA.1 1 (121) 1 (1671) 0.08 (43337) 0 () 0 ()0.5 H-GA.2 1 (188) 1 (1861) 0.07 (36780) 0 () 0 ()H-GA.3 1 (47) 1 (498) 0.07 (21083) 0 () 0 ()Arc-GA 1 (95) 1 (388) 0.01 (554) 0 () 0 ()ESP-GA 1 (52) 0.91 (8190) 0 () 0 () 0 ()H-GA.1 1 (204) 1 (5950) 0 () 0 () 0 ()0.7 H-GA.2 1 (428) 1 (8454) 0 () 0 () 0 ()H-GA.3 1 (61) 0.95 (8960) 0 () 0 () 0 ()Arc-GA 1 (138) 0.71 (1230) 0 () 0 () 0 ()ESP-GA 1 (69) 0.42 (12180) 0 () 0 () 0 ()H-GA.1 1 (338) 0.37 (35593) 0 () 0 () 0 ()0.9 H-GA.2 1 (487) 0.4 (32954) 0 () 0 () 0 ()H-GA.3 1 (92) 0.13 (21457) 0 () 0 () 0 ()Arc-GA 1 (164) 0.04 (1193) 0 () 0 () 0 ()Table 4: SR and AES (within parenthesis) for ESP-GA, Arc-GA and the threeversions of H-GAThis landscape of solvability typically has a high SR for binary CSP instances thathave low density and/or tightness with SRs dropping as density and/or tightnessbecome higher. The region where the algorithm exhibits a phase transition is ofparticular interest and is called the mushy region. The mushy region of the algo-rithms consists of the binary CSPs with density-tightness combinations: (0:1; 0:9),(0:3; 0:7), (0:5; 0:5), (0:7; 0:3) and (0:9; 0:3). This is in accordance with the theo-retical predictions of phase transitions for binary CSPs ([12]). When looking atthe SR of the algorithms in the mushy region we found that Arc-GA has the worstsuccess rate while both H-GA and ESP-GA �nd more solutions. When looking atthe AES of the algorithms in the mushy region we found the opposite with Arc-GAhaving the best performance while H-GA and ESP-GA need more evaluations to �nda solution. In particular, the three versions of H-GA have a similar performance,indicating that the combination of the two heuristic operators is not e�ective.Thus the results of the experiments do not indicate a clear winner amongst thealgorithms.5 Conclusion and Further ResearchIt is interesting to compare the results with those reported in [5], where threeEAs using adaptive �tness functions have been tested on the same benchmarkinstances as used here. The best success rates in that article were obtained by the3In density-tightness combination (0:1; 0:1) the AES-entry contains the symbol i for somealgorithms, this means that a solution was found in the initial population.4If SR = 0 then AES is unde�ned



microgenetic iterative descendent genetic algorithm (MID) of Dozier et al [2]. Thisalgorithm employs heuristic information in the reproduction operator as well asan adaptive penalty mechanism in the �tness function.den- tightnesssity 0.1 0.3 0.5 0.7 0.90.1 1 1 1 1 0.960.3 1 1 1 0.52 00.5 1 1 0.9 0 00.7 1 1 0 0 00.9 1 1 0 0 0Table 5: Success rates for MIDTable 5 reports the success rates obtained by MID, it indicates that MID cansolve random binary CSPs much better than the algorithms considered in thispaper. MID is also faster with respect to AES in all cases (cf. [5]). The successof MID can be explained from the fact that it actually belongs to both classes ofEAs mentioned in the introduction: it uses a heuristic method incorporated intothe mutation operator and an adaptive mechanism rede�ning the �tness functionduring the run. It is reasonable to assume that the search for a solution doespro�t from the combination of these two features. Future work is directed to as-sess the performance of the combination of the heuristics applied in H-GA.1 andthe fastest method from [5, 4], called SAW-ing EA, that uses an on-line �tnessadjusting mechanism adaptively raising penalties of variables that are often in-volved in constraint violations. Furthermore, the use of a restart-strategy for anddi�erent (combinations of) heuristics will also be studied.References[1] J. Bowen and G. Dozier. Solving constraint satisfaction problems using agenetic/systematic search hybride that realizes when to quit. In L.J. Es-helman, editor, Proceedings of the 6th International Conference on GeneticAlgorithms, pages 122{129. Morgan Kaufmann, 1995.[2] G. Dozier, J. Bowen, and D. Bahler. Solving small and large constraintsatisfaction problems using a heuristic-based microgenetic algorithm. In IEEE[8], pages 306{311.[3] G. Dozier, J. Bowen, and A. Homaifar. Solving constraint satisfaction prob-lems using hybrid evolutionary search. IEEE Transactions on EvolutionaryComputation, 2(1):23{33, 1998.[4] A.E. Eiben, J.K. van der Hauw, and J.I. van Hemert. Graph coloring withadaptive evolutionary algorithms. Journal of Heuristics, 4(1):25{46, 1998.[5] A.E. Eiben, J.I. van Hemert, E. Marchiori, and A.G. Steenbeek. Solvingbinary constraint satisfaction problems using evolutionary algorithms with



an adaptive �tness function. In A.E. Eiben, Th. B�ack, M. Schoenauer, andH.-P. Schwefel, editors, Proceedings of the 5th Conference on Parallel ProblemSolving from Nature, number 1498 in LNCS, pages 196{205, Berlin, 1998.Springer.[6] A.E. Eiben, P-E. Rau�e, and Zs. Ruttkay. Solving constraint satisfaction prob-lems using genetic algorithms. In IEEE [8], pages 542{547.[7] A.E. Eiben and Zs. Ruttkay. Self-adaptivity for constraint satisfaction: Learn-ing penalty functions. In Proceedings of the 3rd IEEE Conference on Evolu-tionary Computation, pages 258{261. IEEE Press, 1996.[8] Proceedings of the 1st IEEE Conference on Evolutionary Computation. IEEEPress, 1994.[9] E. Marchiori. Combining constraint processing and genetic algorithms forconstraint satisfaction problems. In Th. B�ack, editor, Proceedings of the7th International Conference on Genetic Algorithms, pages 330{337. MorganKaufmann, 1997.[10] J. Paredis. Co-evolutionary constraint satisfaction. In Y. Davidor, H.-P.Schwefel, and R. M�anner, editors, Proceedings of the 3rd Conference on Par-allel Problem Solving from Nature, number 866 in Lecture Notes in ComputerScience, pages 46{56. Springer-Verlag, 1994.[11] M.C. Ri�-Rojas. Evolutionary search guided by the constraint network tosolve CSP. In Proceedings of the 4th IEEE Conference on Evolutionary Com-putation, pages 337{348. IEEE Press, 1997.[12] B.M. Smith. Phase transition and the mushy region in constraint satisfactionproblems. In A. G. Cohn, editor, Proceedings of the 11th European Conferenceon Arti�cial Intelligence, pages 100{104. Wiley, 1994.[13] E.P.K. Tsang. Foundations of Constraint Satisfaction. Academic Press Lim-ited, 1993.


