Solving Constraint Satisfaction Problems with
Heuristic-based Evolutionary Algorithms

B.G.W. Craenen A .E. Eiben E. Marchiori

LIACS, Leiden University

Abstract

Evolutionary algorithms (EAs) for solving constraint satisfaction prob-
lems (CSPs) can be roughly divided into two classes: EAs using adaptive
fitness functions and EAs using heuristics. In [5] the most effective EAs of the
first class have been compared experimentally using a large set of benchmark
instances consisting of randomly generated binary CSPs. In this paper we
complete this comparison by studying the most effective EAs that use heuris-
tics. We test three heuristic based EAs on the same benchmark instances
used in [5]. The results of our experiments indicate that the three heuristic
based EAs have similar performance on random binary CSPs. Moreover,
comparing these results with those in [5], we are able to identify the best EA
for binary CSPs as the algorithm introduced in [2] which uses a heuristic as
well as an adaptive fitness function.

1 Introduction

Constraint satisfaction is a fundamental topic in artificial intelligence with rele-
vant applications in planning, default reasoning, scheduling, etc. Informally, a
constraint satisfaction problem (CSP) consists of finding an assignment of values
to variables in such a way that the restrictions imposed by the constraints are
satisfied. CSPs are, in general, computationally intractable (NP-hard) and the
algorithms that solve them can be divided into two classes: the ones that are tai-
lored to solve a specific CSP and the ones that use ‘rules-of-thumb’ or heuristics
to solve them. Although heuristics do not guarantee successful performance, they
are able to produce an answer in a very short time and are used to guide the
algorithm through the search space. Evolutionary algorithms (EAs) for CSPs can
be divided into two classes: EAs using adaptive fitness functions ([1, 2, 7, 10]) and
EAs using heuristics ([6, 9, 11]). In [5], an experimental comparison of EAs of
the first class was done using a test suite consisting of randomly generated binary
CSPs. In this paper we perform a comparative study on three EAs of the second
class ([6, 9, 11]) using the same benchmark instances as in [5]. Although a large
number of experiments were done, they do not indicate which algorithm has the
best performance: one algorithm has better performance on some classes of in-
stances, another on other classes. However, when considering the results from [5],
the best EA for random binary CSPs is the algorithm by Dozier et al. [2, 3] which
uses a heuristic as well as an adaptive fitness function. This seems to indicate that
both the adaptive operators as well as heuristics are required for an effective EA

for solving binary CSPs. The paper is organized as follows. Section 2 contains
the definition of CSPs. In Section 3 we describe the main features of the three
heuristic based EAs we intend to compare. Section 4 presents the results of the
experiments. Finally, in Section 5 we conclude with a discussion of the results.

2 Random Binary CSPs over Finite Domains

We consider binary CSPs over finite domains, where constraints act between pairs
of variables. This is not restrictive since every CSP can be transformed into
an equivalent binary CSP (c.f. [13]). A binary CSP is a triple (V,D,C) where
V ={v,...,v,} is a set of variables, D = (Dy,...,D,) is a sequence of finite
domains, such that v; takes value from D;, and C is a set of binary constraints.
A binary constraint c;; is a subset of the cartesian product D; x D; consisting
of the compatible pairs of values for (v;,v;). In the sequel, we shall often use
the incompatible pairs of values when dealing with constraints, like, e.g., in the
generator of random binary CSPs. For simplicity we assume all domains equal
(D; =D for i € {1,n}). An instantiation « is a mapping o : V — D, where
a(v;) is the value associated to v;. A solution o of a CSP is an instantiation such
that (o(v;),o(v;)) is in ¢;;, for every v;,v; in V with ¢ # j. A class of random
binary CSPs can be specified by four parameters {(n,m,d,t) with n the number
of variables, m the (uniform) domain size, d the constraint density and t the
constraint tightness. Constraint density is the probability of a constraint between
two variables,while constraint tightness is the probability of conflict between two
values. When the density or the tightness is varied, CSPs exhibit a phase transition
where problems change from being relatively easy to solve to being very easy to
prove unsolvable. Problems in the phase transition are identified as the most
difficult to solve or prove unsatisfiable (cf., e.g., [12]). The test suite used for the
experiments consists of problem instances produced by a generator! loosely based
on the generator of G. Dozier [1, 3]. The generator produces a CSP by assigning
nn=1) . 4 constraints between two randomly selected variables (v; and v;) and
then assigning |D;| - |D;| - t conflicts to the constraint.

3 Heuristic EAs for CSPs

We consider three heuristic based EAs: ESP-GA by E. Marchiori [9], H-GA by
Eiben et al.[6] and Arc-GA by M. C. Riff Rojas [11]. The three EAs were selected
because of their different use of heuristics: ESP-GA uses heuristics in a repair rule
combined with blind genetic operators, H-GA uses heuristics in its genetic operators
and Arc-GA uses heuristics guided by the constraint network in two novel genetic
operators and a new fitness function. All algorithms use the integer representation:
an individual is a sequence of integers where integer p in the i-th entry indicates
that the i-th variable is set to value p.

Isee http://www.wi.leidenuniv.nl/home/jvhemert /csp-ea/

3.1 ESP-GA

In [9], E. Marchiori introduces an EA for solving CSPs which adjusts the CSP in
such a way that there is only one single (type of) primitive constraint. By decom-
posing more complex constraints into primitive ones, the resulting constraints have
the same granularity and therefore the same intrinsic difficulty. This rewriting of
constraints, called constraint processing, is done in two steps: elimination of func-
tional constraints and decomposition into constraints of a single canonical form.
These primitive constraints are linear inequalities of the form: o -v; — 8- v; # 7.
When all constraints share the same form a single repair rule can be used to
enforce dependency propagation. The repair of an individual is done locally by
applying the repair rule to every violated constraint. The repair rule of the form
if a-p; — - -p; = v then modify p; or p; is applied to all individuals in the popu-
lation. In the repair rule we select the variable which occurs in the largest number
of constraints, and set its value to a new value in the domain of that variable. The
violated constraints to be repaired are selected in a random order. The representa-
tion of the constraints as generated by the CSP generator is a table of incompatible
values. ESP-GA, on the other hand, was devised with the implicit assumption that
the CSP is syntactically by means of a formula. Therefore we translate the tables
of the CSP generator into constraints of the form a - v; — 8- v; # v, by setting
v = |Dj|-pi—p; (with p;, p; the values of v;,v;) and a = |D;| and g = 1. Violation
of such a constraint is detected by entering the values of the specified variables
and checking if the result is the calculated 7-value. The above mentioned trans-
lation produces constraints in canonical form, hence the constraint processing of
ESP-GA becomes unnecessary. This reduces ESP-GA to an EA with a repair rule.
The genetic operators we use are defined as follows. The crossover operator is the
standard one-point crossover: a randomly chosen position divides each parents in
two parts. The two children are constructed by taking the one part from the first
(respectively second) parent and the other part from the second (respectively first)
parent. The mutation is the random mutation which set the value of a randomly
chosen variable to a randomly selected value from its domain. The main features
of ESP-GA are summarized in Table 1.

Crossover operator | One-point crossover

Mutation operator | Random mutation

Fitness function Number of violated constraints
Extra Repair rule

Table 1: Specific features of ESP-GA

3.2 H-GA

In [6], Eiben et al. propose to incorporate existing CSP heuristics into genetic op-
erators operators. Two heuristic operators are specified: an asexual operator that
transforms one individual into a new one and a multi-parent operator that intro-
duces a new individual based on two or more parents. In the next two subsections

we will discuss both heuristic operators in more detail.

3.2.1 Asexual heuristic operator

The asexual heuristic operator selects a number of variables in a given individual,
and then selects new values for these variables. We consider the operator that
changes up to one fourth of the variables, selects the variables that are involved in
the largest number of violated constraints, and selects the values for these variables
which maximize the number of constraints that become satisfied.

3.2.2 Multi-parent heuristic crossover

The basic mechanism of this crossover operator is scanning:for each position, the
values of the variables of the parents in that position are used to determine the
value of the variable in that position in the child. The selection of the value is
done using the heuristic employed in the asexual operator. The difference with
the asexual heuristic operator is that the heuristic does not evaluate all possible
values but only those of the variables in the parents. The multi-parent crossover
is applied with 5 parents and produces one child.

Version 1 | Version 2 Version 3
Main operator Asexual Multi-parent | Multi-parent
heuristic | heuristic heuristic
operator | crossover crossover
Secondary operator | Random | Random Asexual
mutation | mutation heuristic
operator
Fitness function Number of violated constraints
Extra None

Table 2: Specific features of the three implemented versions of H-GA

We consider three EAs based on this approach, and call them H-GA.1, H-GA. 2,
and H-GA.3. As seen in Table 2, we use the asexual heuristic operator in a double
role. In the H-GA.1 version it serves as the main search operator assisted by
(random) mutation. In H-GA. 3 it accompanies the multi-parent crossover in a role
which is normally filled in by mutation. The same random mutation operator used
in ESP-GA is used in H-GA.1 and H-GA.2.

3.3 Arc-GA

In [11] M. C. Riff Rojas introduces a EA for solving CSPs which information
about the constraint network in the fitness function and in the genetic operators
(crossover and mutation). The fitness function is based on the notion of error
evaluation of a constraint. The error evaluation of a constraint is the sum of num-
ber of variables of the constraint? and the number of variables that are connected

2Tn a binary CSP there are just two variables

to those variables in the CSP network. The fitness function of an individual,
called arc-fitness, is the sum of error evaluations of all the violated constraints
in the individual. The mutation operator, called arc-mutation, selects randomly
a variable of an individual and assign to that variable the value that minimizes
the sum of the error-evaluations of the constraints involving that variable. The
crossover operator, called arc-crossover, selects randomly two parents and build a
child by means of an iterative procedure over all the constraints of the considered
CSP. Constraints are ordered according to their error-evaluation with respect to
instantiations of the variables that violate the constraints. For the two variables
of a selected constraint ¢, say v;,v;, the following cases are distinguished. If none
of the two variables are instantiated yet in the offspring under construction, and
none of the parents satisfies ¢, then a combination of values for v;,v; from the
parents is selected which minimizes the sum of the error evaluations of the con-
straints containing v; or v; whose other variables are already instantiated in the
offspring. If there is one parent which satisfies ¢, then that parent supplies the
value for the child. If both parents satisfy ¢, then the parent which has the higher
fitness provides its values for v;,v;. If only one variable, say v;, is not instantiated
in the offspring under construction, then the value for v; is selected from the par-
ent minimizing the sum of the error-evaluations of the constraints involving v;. If
both variables are instantiated in the offspring under construction, then the next
constraint (in the ordering described above) is selected.

Crossover operator | Arc-crossover operator
Mutation operator | Arc-mutation operator
Fitness function Arc-fitness

Extra None

Table 3: Specific features of Arc-GA

4 Experimental Comparison

All three algorithms use a steady state model with a population of 10 individuals.
The choice of such a small population is justified by computational testing. Per
generation two new individuals are created using the crossover or main operator,
both new individuals are mutated. Linear ranking with bias b = 1.5 is used as par-
ent selection while the elitist replacement strategy removes the two individuals in
the population that have the lowest fitness. The results in table 4 are obtained by
testing the three methods (five algorithms) on binary CSPs with 15 variables and
a uniform domain size of 15. We generate 25 classes of instances by considering
the combinations of 5 different constraints tightness and 5 different density values.
In each class 10 instances are generated and 10 independent runs are performed
on each instance, the results for each class are the averages over 100 runs. All the
algorithms stop if they find a solution or after a maximum of 100, 000 fitness eval-
uations. In order to compare the algorithms, two performance measures are used:
the percentage of runs that found a solution, the success rate (SR), and the aver-

age number of fitness evaluations to solution (AES)? in successful runs*. Entries
in boldface are used to highlight the best result for the considered class of CSPs.
Table 4 gives some indication of the landscape of solvability for the different EAs.

| den- | alg || tightness |

sity 0.1 | 0.3 | 0.5 | 0.7 | 0.9
ESP-GA 1 @) 1 (23) T (78) 0.01 (600) 0.45 (13559)
H-GA.1 1 (11) 1 (54) 1 (169) 1 (643) 0.72 (10419)
0.1 H-GA.2 1 (12) 1 (88) 1 (315) 1 (1325) 0.61 (15254)
H-GA.3 1 (i) 1 (23) 1 (53) 1 (484) 0.64 (14752)
Arc-GA 1 (i) 1 (32) 1 (79) 0.99 (211) 0.27 (14131)
ESP-GA 1 (23) 1 (132) 0.01 (5699) 0.01 (8368) 0 0O
H-GA.1 1 (50) 1 (441) 1 (4481) 0.02 (69632) 0 0
0.3 H-GA.2 1 (70) 1 (704) 1 (4921) 0.05 (22954) 0 0
H-GA.3 1 (26) 1 (119) 0.97 (3587) 0 0O 0 0
Arc-GA 1 (33) 1 (175) 0.91 (617) 0.02 (25802) 0 [0}
ESP-GA 1 (36) 1 (891) 0.19 (4371) 0 0O 0 0O
H-GA.1 1 (121) 1 (1671) 0.08 (43337) 0 0 0 0O
0.5 H-GA.2 1 (188) 1 (1861) 0.07 (36780) 0 0 0 0
H-GA.3 1 (47) 1 (498) 0.07 (21083) 0 0 0 0
Arc-GA 1 (95) 1 (388) 0.01 (554) 0 0] 0 (0]
ESP-GA 1 (52) 0.91 (8190) 0 0 0 0O 0 0O
H-GA.1 1 (204) 1 (5950) 0 0 0 0 0 O
0.7 H-GA.2 1 (428) 1 (8454) 0 0 0 0 0 O
H-GA.3 1 (61) 0.95 (8960) 0 0 0 0O 0 0O
Arc-GA 1 (138) 0.71 (1230) 0 0] 0 0] 0 (0]
ESP-GA 1 (69) 0.42 (12180) 0 0O 0 0O 0 0O
H-GA.1 1 (338) 0.37 (35593) 0 0 0 0 0 O
0.9 H-GA.2 1 (487) 0.4 (32954) 0 0 0 0 0 O
H-GA.3 1 (92) 0.13 (21457) 0 0 0 0 0 O
Arc-GA 1 (164) 0.04 (1193) 0 0 0 0 0 6}

Table 4: SR and AES (within parenthesis) for ESP-GA, Arc-GA and the three
versions of H-GA

This landscape of solvability typically has a high SR for binary CSP instances that
have low density and/or tightness with SRs dropping as density and/or tightness
become higher. The region where the algorithm exhibits a phase transition is of
particular interest and is called the mushy region. The mushy region of the algo-
rithms consists of the binary CSPs with density-tightness combinations: (0.1,0.9),
(0.3,0.7), (0.5,0.5), (0.7,0.3) and (0.9,0.3). This is in accordance with the theo-
retical predictions of phase transitions for binary CSPs ([12]). When looking at
the SR of the algorithms in the mushy region we found that Arc-GA has the worst
success rate while both H-GA and ESP-GA find more solutions. When looking at
the AES of the algorithms in the mushy region we found the opposite with Arc-GA
having the best performance while H-GA and ESP-GA need more evaluations to find
a solution. In particular, the three versions of H-GA have a similar performance,
indicating that the combination of the two heuristic operators is not effective.
Thus the results of the experiments do not indicate a clear winner amongst the
algorithms.

5 Conclusion and Further Research
It is interesting to compare the results with those reported in [5], where three

EAs using adaptive fitness functions have been tested on the same benchmark
instances as used here. The best success rates in that article were obtained by the

3Tn density-tightness combination (0.1,0.1) the AES-entry contains the symbol i for some
algorithms, this means that a solution was found in the initial population.
4If SR = 0 then AES is undefined

microgenetic iterative descendent genetic algorithm (MID) of Dozier et al [2]. This
algorithm employs heuristic information in the reproduction operator as well as
an adaptive penalty mechanism in the fitness function.

den- tightness

sity || 01 [03]05] 07 | 0.9
01 [1 [1]1 1 096
03 1 [1t 1 Jos2] 0
05 [1 [1 Jo9] o 0
o7 [t [t]Jo] o 0
09 1 1t Tof o 0

Table 5: Success rates for MID

Table 5 reports the success rates obtained by MID, it indicates that MID can
solve random binary CSPs much better than the algorithms considered in this
paper. MID is also faster with respect to AES in all cases (cf. [5]). The success
of MID can be explained from the fact that it actually belongs to both classes of
EAs mentioned in the introduction: it uses a heuristic method incorporated into
the mutation operator and an adaptive mechanism redefining the fitness function
during the run. It is reasonable to assume that the search for a solution does
profit from the combination of these two features. Future work is directed to as-
sess the performance of the combination of the heuristics applied in H-GA.1 and
the fastest method from [5, 4], called SAW-ing EA, that uses an on-line fitness
adjusting mechanism adaptively raising penalties of variables that are often in-
volved in constraint violations. Furthermore, the use of a restart-strategy for and
different (combinations of) heuristics will also be studied.

References

[1] J. Bowen and G. Dozier. Solving constraint satisfaction problems using a
genetic/systematic search hybride that realizes when to quit. In L.J. Es-
helman, editor, Proceedings of the 6th International Conference on Genetic
Algorithms, pages 122—-129. Morgan Kaufmann, 1995.

[2] G. Dorzier, J. Bowen, and D. Bahler. Solving small and large constraint
satisfaction problems using a heuristic-based microgenetic algorithm. In IEEE
[8], pages 306-311.

[3] G. Dozier, J. Bowen, and A. Homaifar. Solving constraint satisfaction prob-
lems using hybrid evolutionary search. IEEFE Transactions on Evolutionary
Computation, 2(1):23-33, 1998.

[4] A.E. Eiben, J.K. van der Hauw, and J.I. van Hemert. Graph coloring with
adaptive evolutionary algorithms. Journal of Heuristics, 4(1):25-46, 1998.

[5] A.E. Eiben, J.I. van Hemert, E. Marchiori, and A.G. Steenbeek. Solving
binary constraint satisfaction problems using evolutionary algorithms with

[10]

[11]

[12]

[13]

an adaptive fitness function. In A.E. Eiben, Th. Back, M. Schoenauer, and
H.-P. Schwefel, editors, Proceedings of the 5th Conference on Parallel Problem
Solving from Nature, number 1498 in LNCS, pages 196-205, Berlin, 1998.
Springer.

A_E. Eiben, P-E. Raué, and Zs. Ruttkay. Solving constraint satisfaction prob-
lems using genetic algorithms. In IEEE [8], pages 542-547.

A E. Eiben and Zs. Ruttkay. Self-adaptivity for constraint satisfaction: Learn-
ing penalty functions. In Proceedings of the 3rd IEEE Conference on Evolu-
tionary Computation, pages 258-261. IEEE Press, 1996.

Proceedings of the 1st IEEE Conference on Evolutionary Computation. IEEE
Press, 1994.

E. Marchiori. Combining constraint processing and genetic algorithms for
constraint satisfaction problems. In Th. Béck, editor, Proceedings of the
7th International Conference on Genetic Algorithms, pages 330-337. Morgan
Kaufmann, 1997.

J. Paredis. Co-evolutionary constraint satisfaction. In Y. Davidor, H.-P.
Schwefel, and R. Manner, editors, Proceedings of the 3rd Conference on Par-
allel Problem Solving from Nature, number 866 in Lecture Notes in Computer
Science, pages 46-56. Springer-Verlag, 1994.

M.C. Riff-Rojas. Evolutionary search guided by the constraint network to
solve CSP. In Proceedings of the 4th IEEE Conference on Evolutionary Com-
putation, pages 337-348. IEEE Press, 1997.

B.M. Smith. Phase transition and the mushy region in constraint satisfaction
problems. In A. G. Cohn, editor, Proceedings of the 11th European Conference
on Artificial Intelligence, pages 100-104. Wiley, 1994.

E.P.K. Tsang. Foundations of Constraint Satisfaction. Academic Press Lim-
ited, 1993.

