Solving Constraint Satisfaction Problems with Heuristichased Evolutionary

Algorithms
B.G.W. Craenen A.E. Eiben E. Marchiori
Vrije Universiteit . . Vrije Universiteit
Faculty of Exact Sciences Vrije Leiden Faculty of Exact Sciences
De Boelelaan 1081 Universiteit University De Boelelaan 1081
1081 HV Amsterdam Faculty of Exact Leiden Institute 1081 HV Amsterdam
The Netherlands Sciences for Advanced The Netherlands
De Boelelaan Computer
1081 Science
1081 HV Niels Bohrweg 1
Amsterdam 2333 CA Leiden

The Netherlands

The Netherlands

this version ofH GA encompasses a good balance between
the avoidance of premature convergence and guidance of the
search process. However, when considering also the results
from [10], the best EA for random binary CSPs turns out to
be the algorithm by Dozier et al. [5, 7] which employs a
heuristic based on the Iterative Descent Method as well as an
adaptive fitness function. This seems to indicate that the in
tegration of adaptive operators with heuristics are resgliin
order to obtain an effective EA for solving binary CSPs. The
paper is organized as follows. Section 2 contains the pnoble
specification. In Section 3 we describe the main features of
the three heuristic based EAs we intend to compare. Section
4 presents the results of the experiments. In Section 5 we
compare the results with those reported in other experiahent
studies. Finally, in Section 6 we draw some conclusions.

Abstract- Evolutionary algorithms (EAS) for solving con-
straint satisfaction problems (CSPs) can be roughly di-
vided into two classes: EAs with adaptive fithess functions
and heuristic based EAs. In [10] effective EAs of the first
class have been compared experimentally using a large set
of benchmark instances consisting of randomly generated
binary CSPs. In this paper we complete this comparison
by performing the same experiments using three of the
most effective heuristic based EAs. The results of the ex-
periments indicate that the three heuristic based EAs have
similar performance on random binary CSPs. Compar-
ing these results with those in [10], we are able to identify
the best EA for binary CSPs as the algorithm introduced
in [5] which uses a heuristic as well as an adaptive fithess
function.

1 Introduction 2 Random Binary CSPs over Finite Domains

We consider binary CSPs over finite domains, where con-
telligence with relevant applications in planning, defagh- straints act between pairs of variables. This is not rasteic
soning, scheduling, etc. Informally, a constraint satisfa since every CSP can be transformed into an equivalent binary
tion problem consists of finding an assignment of values ta€CSP (c.f. [23]). Abinary CSPis a triple (V, D, C) where
variables in such a way that the restrictions imposed by thé” = {v,,...,v,} is a set of variables? = (D, ..., D,) is
constraints are satisfied. CSPs are, in general, computatioa sequence of finite domains, such thatakes values from
ally intractable (NP-hard): as a consequence a number ab;, andC is a set of binary constraints. Binary constraint
heuristic algorithms have been developed for the approxie;; is a subset of the cartesian prodiist x D; consisting of
mated solution of CSPs. In particular, in the last decade var the compatible pairs of values fév;, v;). The pairs of val-
ous methods based on evolutionary algorithms have been imes which are not compatible, also called incompatiblespair
troduced. Evolutionary algorithms (EAs) for CSPs can beare used in the generator of random binary CSPs we will use
roughly divided into two classes: EAs using adaptive fithessn the experiments. For simplicity, in the sequel we assume
functions [2, 5, 6, 8, 92, 18, 7] and EAs using heuristics all domains are equal; = D for i € {1,n}). An instanti-

[11, 13, 21, 20]. In [10], an experimental comparison ofation . is a mapping : V — D, where.(v;) is the value
EAs of the first class was done using a test suit consistingssociated t@;. A solutionos of a CSP is an instantiation

of randomly generated binary CSPs. In this paper we persuch that(o(v;), o(v;)) is in ¢;;, for everyv;,v; in V with
form a comparative study of three EAs of the second class # j. A class of random binary CSPs can be specified by
using the same benchmark instances as in [10]. The resulfsur parametergn, m,d, t) with n the number of variables,

of the experiments indicate thiet GA. 1 by Eiben etal. [11] m the (uniform) domain size] the constraint densityand¢
slightly outperforms the other two algorithms suggesthmft the constraint tightnessThe constraint density is the proba-

Constraint satisfaction is a fundamental topic in artifigia

bility that a constraint exists between two variables, witile therefore the same intrinsic difficulty. This rewriting afre
constraint tightness is the probability of conflict betwéen straints, calledconstraint processingis done in two steps:
values across a constraint. When one of the parameters is valimination of functional constraints (as BENOCOP [16])

ied, CSPs exhibit phase transitionwhere problems change and decomposition of the CSP into primitive constraints.
from being relatively easy to solve to being very easy to prov The choice of primitive constraints depends on the speci-
unsolvable. The region where this phenomenon occurs is aldication language. The primitive constraints chosen in the
called mushy region [22]. Problems in the mushy region areexamples considered in [13], the N-Queens Problem and
identified as the most difficult to solve or prove unsatiséabl the Five Houses Puzzle, are linear inequalities of the form:
(cf., e.g., [3, 19, 22, 25]). For instance, for= 20, m =10 «-v; — - v; # 7. When all constraints are reduced to the
andd = 0.5 the mushy region consists of those instances wittrsame form, a single probabilistic repair rule is appliedliech
0.34 < t < 0.4: it contains a mixture of soluble and insolu- dependency propagatiorThe repair rule used in the exam-
ble problems. All problems with < 0.34 are soluble, while ples is of the formif a - p; — 8 - p; = v then changep; or p;.

all problems witht > 0.4 are insoluble. The test suit used The violated constraints are processed in random order. Re-
for the experiments conducted in this paper consists of-prolpairing a violated constraint can result in the productién o
lem instances produced by the generatoy J. van Hemert, new violated constraints, which will not be repaired. Thus a
which is loosely based on the generator by G. Dozier [2, 7]the end of the repairing process the chromosome will not in
The generator produces a random binary CSP by assigningeneral be a solutiofeSP- GA is designed under the implicit
n(n—1) . 4 constraints between two randomly selected vari-assumption that CSPs are given in implicit form by means of

3) NN
ables ¢; andv;) and then assigning: - m - t incompatible ~ formulas in some specification language.

pairs to the constraint. In order to investigate the performance&8P- GA on the
random binary CSPs, which are given explicitly by means
3 Heuristic EAs for CSPs of a table of incompatible values, we translate the table int

constraints of the formx - v; — 8 - v; # v, by setting
We consider three heuristic based EASP- GAby E. Mar- 7 = |D|-p; —p; (with p;, p; the values ob;, v;) anda = |D|
chiori [13], H GA by Eiben et al. [11] andArc- GA by ~ andj = 1. Violation of such constraints is detected by enter-
M. C. Riff Rojas [21, 20]. The three EAs were selected be-ing the values of the specified variables and checking if the
cause of the different heuristics they u§SP- GA employs resultis the calculateg-value. This transformation produces
a simple repair rule as separate module (hence the gene@@nstraints in canonical form, hence the constraint pgings
operators are blind)H GA incorporates an heuristic in its 0f ESP- GA becomes unnecessary and E&P- GA becomes
genetic operatorsAr c- GA incorporates information on the a simple EA with repair rule. Moreover, we modify slightly
constraint network into the genetic operators and fithess-fu the repair rule by selecting the variable whose value has to
tion. All algorithms use the integer representation: ari-ind bé changed as the one which occurs in the largest number
vidual is a sequence of integers where integén the i-th of constraints, and by setting its value to a different vatue

entry indicates that theth variable is instantiated to valge ~ D. The genetic operators we use are defined as follows. The
crossover operator is the standard one-point crossover. Th

3.1 ESP- GA mutation is the random mutation which sets the value of a
randomly chosen variable to a randomly selected value from

In [13] E. Marchiori introduces an EA for solving CSPs iis domain. The main features BSP- GA are summarized in
which transforms constraints into a canonical form in suchrgple 1.

a way that there is only one single (type of) primitive con-
straint. This approach, called glass box approach, is used i | Crossover operatof One-point crossover
constraint programming [24], where CSPs are given in im- | Mutation operator | Random mutation

plicit form by means of formulas of a given specification lan- | Fitness function Number of violated constraints
guage. For instance, for the N-Queens Problem, we have the| Extra Repair rule
well known formulation in terms of the following constrasnt

Table 1: Specific features &SP- GA

two queens cannot be on the same row:

v; £ Uj foralli # 5 32H GA
two queens cannot be on the same diagonal: In [?, 11], Eiben et al. propose to incorporate existing CSP
abs(v; — v;) # abst(i — j) foralli # j heuristics into genetic operators. Two heuristic base@tjen

operators are specified: an asexual operator that transform
one individual into a new one and a multi-parent operatdr tha
generates one offspring using two or more parents. In the
next two subsections we discuss both heuristic based geneti

By decomposing more complex constraints into primitive
ones, the resulting constraints have the same granularity a

1see http://www.wi.leidenuniv.nl/home/jvhemert/csp-ea

operators in more detail. these variables in the CSP network. The fitness function of
an individual, calledarc-fitnessis the sum of error evalua-

3.2.1 Asexual heuristic based genetic operator tions of all the violated constraints in the individual. Tine-

The asexual heuristic based genetic operator selects amumgation operatc-)r,_ calledrc-mut.ation selects rgndomly a vark-

of variables in a given individual, and then selects neweslu ab_Ie_ Of an individual and assigns to that_vanable the v&iae;

. S minimizes the sum of the error-evaluations of the constsain
for these variables. We (_:on5|der the operatorthat charmes li'nvolving that variable. The crossover operator, cakiec-
to one fourth of the variables, selects the variables that ar
involved in the largest number of violated constraints, s&d
lects the values for these variables which maximize the nu

ber of constraints that become satisfied.

crossover selects randomly two parents and builds an off-
spring by means of the following iterative procedure ovér al
"Mhe constraints of the considered CSP. Constraints areaatde
according to their error-evaluation with respect to intan
tions of the variables that violate the constraints. Forie
variables of a selected constraiptsayv;, v;, the following
The basic mechanism of this crossover operator is scanningaéses are distinguished. If none of the two variables are in-
for each position, the values of the variables of the parients Stantiated in the offspring under construction, and none of
that position are used to determine the value of the variabléhe parents satisfies then a pair of values fos;, v; from
in that position in the child. The selection of the value isthe parents is selected which minimizes the sum of the error
done using the heuristic employed in the asexual operatogvaluations of the constraints containingor v; whose other
The difference with the asexual heuristic operator is that t Vvariables are already instantiated in the offspring. Ifr¢he
heuristic does not evaluate all possible values but onlggho iS one parent which satisfies then that parent supplies the
of the variables in the parents. The multi-parent crossisver value for the child. If both parents satisfy then the parent

3.2.2 Multi-parent heuristic crossover

applied with 5 parents and produces one child. which has the higher fitness provides its valuesifgp;. If
only one variable, say;, is not instantiated in the offspring
Version 1| Version 2 \ersion 3 under construction, then the value fgris selected from the
Main Asexual | Multi-parent| Multi-parent parent minimizing the sum of the error-evaluations of the-co
operator | heuristic | heuristic heuristic straints involvingu;. If both variables are instantiated in the
operator | crossover crossover offspring under construction, then the next constrainttfi
Secondary] Random | Random Asexual ordering described above) is selected.
operator | mutation | mutation heuristic
operator Crossover operator Arc-crossover operator
Fitness Number of violated constraints Mutation operator | Arc-mutation operator
function Fitness function Arc-fitness
Extra None Extra None
Table 2: Specific features of the three implemented versions Table 3: Specific features éf c- GA
of H GA

We consider three EAs based on this approach, and c
themH GA. 1, H GA. 2, andH GA. 3. As seen in Table 2,
we use the asexual heuristic operator in a double role. Iny three algorithms use a steady state model with a popu-
theH GA. 1 version it serves as the main search operator aSation of 10 individuals. The choice of such a small popu-
sisted by (random) mutation. i GA. 3 it accompanies the |ation is justified by computational testing (see also [,
multi-parent crossover in a role which is normally filled ;b At each generation two new individuals are created using the
mutation. The same random mutation operator us&SP crossover (or the main genetic operator), and both new indi-

3 Experimental Comparison

(GAis used inH GA. 1 andH- GA. 2. viduals are mutated. Linear ranking with bias: 1.5 is used
as parent selection while the replacement strategy removes
3.3 Arc-GA the two individuals in the population that have the lowest fit

In [21, 20] M. C. Riff Rojas introduces an EA for solving N€SS: The results in Tables 4 and 5 are obtained by testing the

CSPs which uses information about the constraint networkré® methods (five algorithms) on random binary CSPs with
in the fitness function and in the genetic operators (cramsov 15 vVariables and a uniform domain size of. We generate
and mutation). The fitness function is based on the notiory> classes of instances by considering the combinatiois of
of error evaluationof a constraint. The error evaluation of a different constraint tightness ariddifferent density values.
constraint is the sum of the number of variables of the conFOr €ach class0 instances are generated aridindependent

strain? and the number of variables that are connected t¢Uns are performed on each instance; thus the results for eac
class are the averages ové0 runs. All the algorithms stop if

2|n a binary CSP there are just two variables they find a solution or if a maximum a0, 000 fithess eval-

uations is reached. In order to compare the algorithms two|den-| alg. tightness
performance measures are used: the percentage of runs thasity 01 03 05 0.7 09
found a solution, called success ratR), and the average 'Esp- GA 10 17 28 68| 2858
number of fitness evaluations to solutiohA.S) in success- H GA. 1 10 12 14 23 190
ful runs’. 0.1|HGA 2 11 292 907| 1942 10988
- H GA 3 11 261 956/ 1989 13111
den- alg. tightness Arc-GA| 10| 18] 32| 77| 319
sity | 0.1 0.3 0.5/ 0.7/ 0.9 Esp- GA 14 55 667 81891 .
Esp-GA| 1} 1} 1} 1/ 0.68 HGA 1| 11 19 63| 272 -
HG.1) 1] 1| 1| 1049 0.3|H GA 2| 279| 2381 6567 24123 -
01|HGA. 2y 1/ 1| 1| 1 046 H GA 3|| 293| 2400/ 7087 24226 -
H GA 3 1 1 1 1] 0.43 Ar c- GA 16 50| 452 - -
Arc-GAj 1) 1) 1] 11030 Esp- GA|| 23| 268| 18648 - -
Esp-GA| 1| 1] 11002 O HGA 1| 13 34| 4205 - -
HG.1)| 1| 1 17030 O 0.5 |H GA 2| 998 4826 24455 - -
03/HGA. 2| 1 1} 1006 O H GA 3|| 897| 4885 21430 - -
H GA 3 1 1 1] 0.05 0 Ar c- GA 92 88 955 - -
Arc- GA 1 1] 0.99 0 0 Esp- GA 31| 22218 - N N
Esp- GA 1 1| 0.04 0 0 H GA 1 17 179 - - -
HGA1l) 1] 1,018 0] O 0.7 |H GA. 2| 1621| 10259 - - -
05 |H GA 2 1 1| 0.15 0 0 H GA. 3| 1637 10284 - - -
H GA. 3 1 1| 0.14 0 0 Ar c- GA 37| 367 - - -
Arc- GA 1 1| 0.04 0 0 Esp- GA 43 _ N N N
Esp-GA| 1| 1} 0] 0] O HGA 1| 19| 1776 - - -
HGA1) 1 1 0 0 O 0.9 |H GA. 2| 2310| 30443 - - -
07/HGA. 2| 1 1} 0 0 O H GA. 3|| 2314| 32095 - - -
H GA. 3 1 1 0 0 0 Ar c- GA 46| 1439 - - -
Arc- GA 1| 0.97 0 0 0
Esp-GA| 1 0 0 0 0 Table 5: AES ofEsp- GA, H- GA. {1, 2, 3}, andAr c- GA
H GA 1 1] 0.49 0 0 0
09 |H GA 2 1] 0.36 0 0 0
H GA 3 1! 0.35 0 0 0 gorithms when looking a R, with a single exception for
Arc-GAll 1] 017 0 0 0 density-tightness combinatiof®.1,0.9). When looking at

the AES of the algorithms in thenushy regiorwe found a
Table 4: SR oEsp- GA H GA. {1, 2, 3}, andAr c- GA tie betweert GA. 1 andAr c- GA: in density-tightness com-
binations(0.1,0.9), (0.3,0.7) and(0.7,0.3) H GA performs

Tables 4 and 5 give some indication of tamdscape of Petter while in density-tightness combinatigiiss, 0.5) and
solvability for the different EAs. This landscape of solvabil- (0-9,0-3) A c- GAhas the best performance. Concerning the
ity typically has a high§ R for binary CSP instances that have three versions oft GA, we conclude that the heuristic asex-
low density and/or tightness, withRs dropping as density ual version outperforms the multi-parent crossover operat
and/or tightness becomes higher. The region where the aftnd that the replacementin the latter algorithm of the ramndo
gorithm exhibits aphase transitioris of particular interest Mutation operator with an heuristic mutation operator base
since it contains hard problem instances. Timashy region ©N the asexual crossover operator does not improve the per-
of the algorithms consists of the binary CSPs with the fol-formance. Based on the good performanceto®A. 1 when

lowing density-tightness combination@.1, 0.9), (0.3,0.7), l0okingatS R and the fair performance when looking 4’5
(0.5,0.5), (0.7,0.3) and (0.9,0.3). This is in accordance We conclude thatt GA. 1 is the best algorithm of the five

with the theoretical predictions of phase transitions for b tested. We suspect that the success-dBA. 1 lies in the fact
nary CSPs (cf. e.g., [22]). When looking at th& of the that it uses heuristic mformz_mo_n in su_ch away thz_it pre_nr«_ﬂitu
algorithms on hard instances we found that- GA has the ~ convergence of the populationis avoided while still pravid
worst success rate while bokh GA andESP- GA find more ~ guidance for finding solutions.

solutions. The only exception to this is in density-tiglgse

combination(0.9, 0.3) whereESP- GAfinds no solutionsand 5 Discussion

Ar c- GAstill finds 17 solutions out of a hundred experiments.

The results indicate that- GA. 1 outperforms the other al- It iS interesting to compare the results with those repairied
[10], where three EAs using adaptive fitness functions have

3I1f SR = 0 then AES is undefined been tested on the same benchmark instances as used here.

The best results in that article were obtained by the microge An alternative evolutionary approach for solving CSPs is
netic iterative descendent genetic algoritivh D) of Dozier the so-called genetic local search. In the genetic locathea
et al [5]. M D incorporates heuristics in the reproduction approach, genetic operators act on a population of local op-
mechanism and in the fitness function in order to direct thdima resulting from the application of a local search proce-
search towards better individuals. More precisklyDworks dure to each chromosome. This approach has been shown to
on a pool of8 individuals. It uses a roulette-wheel based se-be rather effective for tackling NP-hard combinatorialiopt
lection mechanism; however, it is not generational, butdhas mization problems (cf., e.g. [14]). In particular, in [1%let
steady state reproduction mechanism where at each genemuthors show that a genetic local search algorithm obtained
tion an offspring is created by mutating a specific gene of thdy incorporating local search into a simple GA yields equal
selected chromosome, called pivot gene, and that offspringr better results thal Don the same benchmarkinstances as
replaces the worse individual of the actual population. used here. The resulting evolutionary algorithm is called R
Roughly, the fithess function of a chromosome is deterpair Improve Genetic Algorithm. More specificaligl GA is
mined by adding a suitable penalty term to the number of cona generational genetic algorithm with elitist selectiorchee
straint violations the chromosome is involved in. The pgnal nism which copies the best individual of a population to the
term depends on the set of break-outs whose values occur population of the next generatiofl][A chromosome after
the chromosome. A break-out consists of two parts: 1) a paiapplication of local search represents a partial solutibat(
of values that violates a constraint; 2) a weight associtted is some variables may not be instantiated, and all the con-
that pair. The set of break-outs is initially empty and it is straints whose variables are both instantiated are salfjsfie
modified during the execution by increasing the weights ofThe fithess of a chromosome is equal to the number of instan-
1 and by adding new break-outs according to the techniqutated variables in the chromosome. The genetic operaters a

used in the Iterative Descent Method [17]. blind: uniform crossover and random mutation which adds or
In [5] it is shown thatM D outperforms the lterative De- deletes randomly selected values from the genes (thus genes
scent Method algorithm [17]. before application of local search may contain more than one
value; see [15] for more details).
den- tightness Tables 8 and 9 report SR and AES obtainedrbyGA.
sity [0.1{0.3|05]| 0.7 | 0.9
01 1|1 [1] 1 [096 den- tightness
0.3 1 1 1 1052 0 sity ||0.1]/ 03|05 0.7 | 0.9
0.5 1 1 109| O 0 0.1 1 1 1 1 | 0.96
0.7 1 1 0 0 0 0.3 1 1 1 (072, 0
0.9 1 1 0 0 0 0.5 1 1 1 0 0
0.7 1 1 0 0 0
Table 6: SR foM D 09 1 1 0 0 0
Table 8: SR folRl GA
den- tightness
sity || 0.1| 0.3 0.5 0.7 0.9
01 1| 4 21 87 | 2923 den- tightness
0.3 3 50 323 | 32412 - sity || 0.1| 0.3 | 0.5 0.7 0.9
0.5 || 10 | 177 | 26792 - - 01| 10| 10 | 10 17 197
0.7 || 20 | 604 - - - 03 || 10| 10 | 24 | 15604| -
0.9 || 33 | 8136 - - - 0.5 || 10| 10 | 6809 - -
0.7 || 10 | 42 - - -
Table 7: AES foiM D 09 | 10 | 588 - - -
Tables 6 and 7 report SR and AES obtainedwyp: the Table 9: AES foiRl GA

results show thatl D has better performance than the algo-

rithms considered in this paper, both in terms of SR and AES. Observe that AES fdRl GA does not take into account the
The success d¥l D can be explained from the fact that it computational effort of local search, hence it is much lower

belongs to both classes of EAs mentioned in the introductionthan AES ofM D. In terms of running timeM Dis about five

it uses a heuristic method incorporated into the mutation optimes faster thaRl GA. Thus the computational effort M D

erator and an adaptive mechanism which changes the fitnesan be fairly considered less than the on&obEGA.

function during the run. The results of the experiments seem In [4] it is shown that the performance Bf GA does not

to indicate that the search for a solution does profit from thémprove when the SAW-ing method is incorporated in the

combination of heuristic information and dynamic adaptati selection mechanism of the GA: SAW-ing uses an on-line

of the fitness function. fithess adjusting mechanism adaptively raising penaltfes o

variables that are often involved in constraint violationkis

seems to indicate that the search guidance provided by SAW-
ing is already present in the genetic local search algorithm

6 Conclusion

The experimental study conducted in this paper togethér wit

those reported in [10, 15] indicate that effective methods

based on evolutionary algorithms for solving random binary
CSPs need to incorporate problem knowledge, either in the

form of ad hoc genetic operators and fitness function, or ir[lO]

the form of a local search procedure.

In particular, the best performance is obtained by those
evolutionary algorithms incorporating local search, @it
the genetic operators and fitness function [5], or as anmeater
module [15].

Bibliography

[1]

[2] J. Bowen and G. Dozier. Solving constraint satisfaction[12]

[3]

[4]

[5]

[6]

[7]

R.K. Belew and L.B. Booker, editors.Proceedings
of the 4th International Conference on Genetic Algo-
rithms Morgan Kaufmann Publishers, Inc., 1991.

problems using a genetic/systematic search hybride that
realizes when to quit. In L.J. Eshelman, editigceed-

ings of the 6th International Conference on Genetic Al-[13]

gorithms pages 122-129. Morgan Kaufmann Publish-
ers, Inc., 1995.

P. Cheeseman, B. Kenefsky, and W.M. Taylor. Where
the really hard problems are. In J. Mylopoulos and
R. Reiter, editorsProceedings of the 12th 1JCApages
331-337. Morgan Kaufmann Publishers, Inc., 1991.

B.G.W. Craenen, A.E Eiben, E. Marchiori, and
A. Steenbeek. Combining local search and fithess func-
tion adaptation in a GA for solving binary constraint
satisfaction problems. IRroceedings of the Genetic
and Evolutionary Computation Conference (GECCO-
2000) 2000.

G. Dozier, J. Bowen, and D. Bahler. Solving small and
large constraint satisfaction problems using a heuristicl
based microgenetic algorithm. In IEEE [12], pages 306—
311.

G. Dozier, J. Bowen, and D. Babhler.
domly generated constraint satisfaction problems using
a micro-evolutionary hybrid that evolves a population
of hill-climbers. InProceedings of the 2nd IEEE Con-
ference on Evolutionary Computatiopages 614—619.
IEEE Computer Society Press, 1995.

G. Dozier, J. Bowen, and A. Homaifar. Solving con-
straint satisfaction problems using hybrid evolutionary
search. Transactions on Evolutionary Computation
2(1):23-33, 1998.

(11]

(14]

Solving ran- [17]

(18]

[8] A.E. Eiben and J.K. van der Hauw. Adaptive penalties

for evolutionary graph-coloring. In J.-K. Hao, E. Lut-
ton, E. Ronald, M. Schoenauer, and D. Snyers, ed-
itors, Artificial Evolution '97, number 1363 in Lec-
ture Notes in Computer Science, pages 95-106, Berlin,
1998. Springer-Verlag.

[9] A.E. Eiben, J.K. van der Hauw, and J.I. van Hemert.

Graph coloring with adaptive evolutionary algorithms.
Journal of Heuristics4(1):25-46, 1998.

A.E. Eiben, J.I. van Hemert, E. Marchiori, and A.G.
Steenbeek. Solving binary constraint satisfaction prob-
lems using evolutionary algorithms with an adaptive fit-
ness function. In A.E. Eiben, Th. Back, M. Schoenauer,
and H.-P. Schwefel, editorBroceedings of the 5th Con-
ference on Parallel Problem Solving from Natureim-

ber 1498 in Lecture Notes in Computer Science, pages
196-205, Berlin, 1998. Springer-Verlag.

A.E. Eiben, P-E. Raug, and Zs. Ruttkay. Solving con-
straint satisfaction problems using genetic algorithms.
In IEEE [12], pages 542-547.

Proceedings of the 1st IEEE Conference on Evolution-
ary ComputationlEEE Computer Society Press, 1994.

E. Marchiori. Combining constraint processing and ge-
netic algorithms for constraint satisfaction problems. In
Th. Back, editorProceedings of the 7th International
Conference on Genetic Algorithpages 330-337, San
Francisco, CA, 1997. Morgan Kaufmann Publishers,
Inc.

E. Marchiori. A simple heuristic based genetic algo-
rithm for the maximum clique problem. Rroceedings
of the ACM Symposium on Applied Computipgges
366—-373. ACM Press, 1998.

] E. Marchioriand A. Steenbeek. Genetic local search al-

gorithm for random binary constraint satisfaction prob-
lems. InProceedings of the ACM Symposium on Ap-
plied Computing2000. to appear.

16] Z. Michalewicz and M. Schoenauer. Evolutionary al-

gorithms for constrained parameter optimization prob-
lems. Evolutionary Computatiomi(1):1-32, 1996.

P. Morris. The breakout method for escaping from local
minima. InProceedings of the 11th National Confer-
ence on Artificial Intelligence, AAAI-9®ages 40-45.
AAAI Press/The MIT Press, 1993.

J. Paredis. Coevolutionary constraint satisfactidn.

Y. Davidor, H.-P. Schwefel, and R. Manner, editors,
Proceedings of the 3rd Conference on Parallel Prob-
lem Solving from Natutenumber 866 in Lecture Notes
in Computer Science, pages 46-55, Berlin, 1994.
Springer-Verlag.

[19] P. Prosser. An empirical study of phase transitions in

[20]

[21]

[22]

[23]

[24]

[25]

binary constraint satisfaction problem3ournal of Ar-

tificial Intelligence 81:81-109, 1996.

M.C. Riff-Rojas. Evolutionary search guided by the
constraint network to solve CSP. In Belew and Booker
[1], pages 337-348.

M.C. Riff-Rojas. Using the knowledge of the constraint
network to design an evolutionary algorithm that solves
CSP. In Belew and Booker [1], pages 279-284.

B.M. Smith. Phase transition and the mushy region in
constraint satisfaction problems. In A.G. Cohn, editor,
Proceedings of the 11th European Conference on Atrtifi-
cial Intelligence pages 100-104, New York, NY, 1994,
John Wiley & Sons.

E.P.K. Tsang.Foundations of Constraint Satisfaction
Academic Press Limited, 1993.

P. van Hentenryck, V. Saraswat, and Y. Deville. Con-
straint processing in cc(fd). In A. Podelski, editor,
Constraint Programming: Basics and Tren@pringer-
Verlag, Berlin, 1995.

C.P. Williams and T. Hogg. Exploiting the deep struc-
ture of constraint problemsournal of Artificial Intelli-
gence70:73-117,1994.

