
Solving Constraint Satisfaction Problems with Heuristic-based Evolutionary
Algorithms

B.G.W. Craenen
Vrije Universiteit

Faculty of Exact Sciences
De Boelelaan 1081

1081 HV Amsterdam
The Netherlands

A.E. Eiben

Vrije
Universiteit

Faculty of Exact
Sciences

De Boelelaan
1081

1081 HV
Amsterdam

The Netherlands

Leiden
University

Leiden Institute
for Advanced

Computer
Science

Niels Bohrweg 1
2333 CA Leiden
The Netherlands

E. Marchiori
Vrije Universiteit

Faculty of Exact Sciences
De Boelelaan 1081

1081 HV Amsterdam
The Netherlands

Abstract- Evolutionary algorithms (EAs) for solving con-
straint satisfaction problems (CSPs) can be roughly di-
vided into two classes: EAs with adaptive fitness functions
and heuristic based EAs. In [10] effective EAs of the first
class have been compared experimentally using a large set
of benchmark instances consisting of randomly generated
binary CSPs. In this paper we complete this comparison
by performing the same experiments using three of the
most effective heuristic based EAs. The results of the ex-
periments indicate that the three heuristic based EAs have
similar performance on random binary CSPs. Compar-
ing these results with those in [10], we are able to identify
the best EA for binary CSPs as the algorithm introduced
in [5] which uses a heuristic as well as an adaptive fitness
function.

1 Introduction

Constraint satisfaction is a fundamental topic in artificial in-
telligence with relevant applications in planning, default rea-
soning, scheduling, etc. Informally, a constraint satisfac-
tion problem consists of finding an assignment of values to
variables in such a way that the restrictions imposed by the
constraints are satisfied. CSPs are, in general, computation-
ally intractable (NP-hard): as a consequence a number of
heuristic algorithms have been developed for the approxi-
mated solution of CSPs. In particular, in the last decade vari-
ous methods based on evolutionary algorithms have been in-
troduced. Evolutionary algorithms (EAs) for CSPs can be
roughly divided into two classes: EAs using adaptive fitness
functions [2, 5, 6, 8, 9,?, 18, ?] and EAs using heuristics
[11, 13, 21, 20]. In [10], an experimental comparison of
EAs of the first class was done using a test suit consisting
of randomly generated binary CSPs. In this paper we per-
form a comparative study of three EAs of the second class
using the same benchmark instances as in [10]. The results
of the experiments indicate thatH-GA.1 by Eiben et al. [11]
slightly outperforms the other two algorithms suggesting that

this version ofH-GA encompasses a good balance between
the avoidance of premature convergence and guidance of the
search process. However, when considering also the results
from [10], the best EA for random binary CSPs turns out to
be the algorithm by Dozier et al. [5, 7] which employs a
heuristic based on the Iterative Descent Method as well as an
adaptive fitness function. This seems to indicate that the in-
tegration of adaptive operators with heuristics are required in
order to obtain an effective EA for solving binary CSPs. The
paper is organized as follows. Section 2 contains the problem
specification. In Section 3 we describe the main features of
the three heuristic based EAs we intend to compare. Section
4 presents the results of the experiments. In Section 5 we
compare the results with those reported in other experimental
studies. Finally, in Section 6 we draw some conclusions.

2 Random Binary CSPs over Finite Domains

We consider binary CSPs over finite domains, where con-
straints act between pairs of variables. This is not restrictive
since every CSP can be transformed into an equivalent binary
CSP (c.f. [23]). Abinary CSPis a triple (V;D; C) whereV = fv1; : : : ; vng is a set of variables,D = (D1; : : : ; Dn) is
a sequence of finite domains, such thatvi takes values fromDi, andC is a set of binary constraints. Abinary constraint
ij is a subset of the cartesian productDi �Dj consisting of
the compatible pairs of values for(vi; vj). The pairs of val-
ues which are not compatible, also called incompatible pairs,
are used in the generator of random binary CSPs we will use
in the experiments. For simplicity, in the sequel we assume
all domains are equal (Di = D for i 2 f1; ng). An instanti-
ation � is a mapping� : V ! D, where�(vi) is the value
associated tovi. A solution� of a CSP is an instantiation
such that(�(vi); �(vj)) is in 
ij , for everyvi; vj in V withi 6= j. A class of random binary CSPs can be specified by
four parametershn;m; d; ti with n the number of variables,m the (uniform) domain size,d theconstraint densityandt
theconstraint tightness. The constraint density is the proba-



bility that a constraint exists between two variables, while the
constraint tightness is the probability of conflict betweentwo
values across a constraint. When one of the parameters is var-
ied, CSPs exhibit aphase transitionwhere problems change
from being relatively easy to solve to being very easy to prove
unsolvable. The region where this phenomenon occurs is also
called mushy region [22]. Problems in the mushy region are
identified as the most difficult to solve or prove unsatisfiable
(cf., e.g., [3, 19, 22, 25]). For instance, forn = 20, m = 10
andd = 0:5 the mushy region consists of those instances with0:34 < t < 0:4: it contains a mixture of soluble and insolu-
ble problems. All problems witht � 0:34 are soluble, while
all problems witht � 0:4 are insoluble. The test suit used
for the experiments conducted in this paper consists of prob-
lem instances produced by the generator1 by J. van Hemert,
which is loosely based on the generator by G. Dozier [2, 7].
The generator produces a random binary CSP by assigningn(n�1)2 � d constraints between two randomly selected vari-
ables (vi andvj) and then assigningm � m � t incompatible
pairs to the constraint.

3 Heuristic EAs for CSPs

We consider three heuristic based EAs:ESP-GA by E. Mar-
chiori [13], H-GA by Eiben et al. [11] andArc-GA by
M. C. Riff Rojas [21, 20]. The three EAs were selected be-
cause of the different heuristics they use:ESP-GA employs
a simple repair rule as separate module (hence the genetic
operators are blind);H-GA incorporates an heuristic in its
genetic operators;Arc-GA incorporates information on the
constraint network into the genetic operators and fitness func-
tion. All algorithms use the integer representation: an indi-
vidual is a sequence of integers where integerp in the i-th
entry indicates that thei-th variable is instantiated to valuep.

3.1ESP-GA

In [13] E. Marchiori introduces an EA for solving CSPs
which transforms constraints into a canonical form in such
a way that there is only one single (type of) primitive con-
straint. This approach, called glass box approach, is used in
constraint programming [24], where CSPs are given in im-
plicit form by means of formulas of a given specification lan-
guage. For instance, for the N-Queens Problem, we have the
well known formulation in terms of the following constraints:

two queens cannot be on the same row:vi 6= vj for all i 6= j
two queens cannot be on the same diagonal:abs(vi � vj) 6= abst(i� j) for all i 6= j

By decomposing more complex constraints into primitive
ones, the resulting constraints have the same granularity and

1see http://www.wi.leidenuniv.nl/home/jvhemert/csp-ea/

therefore the same intrinsic difficulty. This rewriting of con-
straints, calledconstraint processing, is done in two steps:
elimination of functional constraints (as inGENOCOP [16])
and decomposition of the CSP into primitive constraints.
The choice of primitive constraints depends on the speci-
fication language. The primitive constraints chosen in the
examples considered in [13], the N-Queens Problem and
the Five Houses Puzzle, are linear inequalities of the form:� � vi � � � vj 6= 
. When all constraints are reduced to the
same form, a single probabilistic repair rule is applied, called
dependency propagation. The repair rule used in the exam-
ples is of the formif � � pi�� � pj = 
 then changepi or pj .
The violated constraints are processed in random order. Re-
pairing a violated constraint can result in the production of
new violated constraints, which will not be repaired. Thus at
the end of the repairing process the chromosome will not in
general be a solution.ESP-GA is designed under the implicit
assumption that CSPs are given in implicit form by means of
formulas in some specification language.

In order to investigate the performance ofESP-GA on the
random binary CSPs, which are given explicitly by means
of a table of incompatible values, we translate the table into
constraints of the form� � vi � � � vj 6= 
, by setting
 = jDj �pi�pj (with pi; pj the values ofvi; vj) and� = jDj
and� = 1. Violation of such constraints is detected by enter-
ing the values of the specified variables and checking if the
result is the calculated
-value. This transformation produces
constraints in canonical form, hence the constraint processing
of ESP-GA becomes unnecessary and theESP-GA becomes
a simple EA with repair rule. Moreover, we modify slightly
the repair rule by selecting the variable whose value has to
be changed as the one which occurs in the largest number
of constraints, and by setting its value to a different valueinD. The genetic operators we use are defined as follows. The
crossover operator is the standard one-point crossover. The
mutation is the random mutation which sets the value of a
randomly chosen variable to a randomly selected value from
its domain. The main features ofESP-GA are summarized in
Table 1.

Crossover operator One-point crossover
Mutation operator Random mutation
Fitness function Number of violated constraints
Extra Repair rule

Table 1: Specific features ofESP-GA

3.2H-GA

In [?, 11], Eiben et al. propose to incorporate existing CSP
heuristics into genetic operators. Two heuristic based genetic
operators are specified: an asexual operator that transforms
one individual into a new one and a multi-parent operator that
generates one offspring using two or more parents. In the
next two subsections we discuss both heuristic based genetic



operators in more detail.

3.2.1 Asexual heuristic based genetic operator

The asexual heuristic based genetic operator selects a number
of variables in a given individual, and then selects new values
for these variables. We consider the operator that changes up
to one fourth of the variables, selects the variables that are
involved in the largest number of violated constraints, andse-
lects the values for these variables which maximize the num-
ber of constraints that become satisfied.

3.2.2 Multi-parent heuristic crossover

The basic mechanism of this crossover operator is scanning:
for each position, the values of the variables of the parentsin
that position are used to determine the value of the variable
in that position in the child. The selection of the value is
done using the heuristic employed in the asexual operator.
The difference with the asexual heuristic operator is that the
heuristic does not evaluate all possible values but only those
of the variables in the parents. The multi-parent crossoveris
applied with 5 parents and produces one child.

Version 1 Version 2 Version 3
Main Asexual Multi-parent Multi-parent
operator heuristic heuristic heuristic

operator crossover crossover
Secondary Random Random Asexual
operator mutation mutation heuristic

operator
Fitness Number of violated constraints
function
Extra None

Table 2: Specific features of the three implemented versions
of H-GA

We consider three EAs based on this approach, and call
themH-GA.1, H-GA.2, andH-GA.3. As seen in Table 2,
we use the asexual heuristic operator in a double role. In
theH-GA.1 version it serves as the main search operator as-
sisted by (random) mutation. InH-GA.3 it accompanies the
multi-parent crossover in a role which is normally filled in by
mutation. The same random mutation operator used inESP-
GA is used inH-GA.1 andH-GA.2.

3.3 Arc-GA

In [21, 20] M. C. Riff Rojas introduces an EA for solving
CSPs which uses information about the constraint network
in the fitness function and in the genetic operators (crossover
and mutation). The fitness function is based on the notion
of error evaluationof a constraint. The error evaluation of a
constraint is the sum of the number of variables of the con-
straint2 and the number of variables that are connected to

2In a binary CSP there are just two variables

these variables in the CSP network. The fitness function of
an individual, calledarc-fitness, is the sum of error evalua-
tions of all the violated constraints in the individual. Themu-
tation operator, calledarc-mutation, selects randomly a vari-
able of an individual and assigns to that variable the value that
minimizes the sum of the error-evaluations of the constraints
involving that variable. The crossover operator, calledarc-
crossover, selects randomly two parents and builds an off-
spring by means of the following iterative procedure over all
the constraints of the considered CSP. Constraints are ordered
according to their error-evaluation with respect to instantia-
tions of the variables that violate the constraints. For thetwo
variables of a selected constraint
, sayvi; vj , the following
cases are distinguished. If none of the two variables are in-
stantiated in the offspring under construction, and none of
the parents satisfies
, then a pair of values forvi; vj from
the parents is selected which minimizes the sum of the error
evaluations of the constraints containingvi or vj whose other
variables are already instantiated in the offspring. If there
is one parent which satisfies
, then that parent supplies the
value for the child. If both parents satisfy
, then the parent
which has the higher fitness provides its values forvi; vj . If
only one variable, sayvi, is not instantiated in the offspring
under construction, then the value forvi is selected from the
parent minimizing the sum of the error-evaluations of the con-
straints involvingvi. If both variables are instantiated in the
offspring under construction, then the next constraint (inthe
ordering described above) is selected.

Crossover operator Arc-crossover operator
Mutation operator Arc-mutation operator
Fitness function Arc-fitness
Extra None

Table 3: Specific features ofArc-GA

4 Experimental Comparison

All three algorithms use a steady state model with a popu-
lation of 10 individuals. The choice of such a small popu-
lation is justified by computational testing (see also [10,?]).
At each generation two new individuals are created using the
crossover (or the main genetic operator), and both new indi-
viduals are mutated. Linear ranking with biasb = 1:5 is used
as parent selection while the replacement strategy removes
the two individuals in the population that have the lowest fit-
ness. The results in Tables 4 and 5 are obtained by testing the
three methods (five algorithms) on random binary CSPs with15 variables and a uniform domain size of15. We generate25 classes of instances by considering the combinations of5
different constraint tightness and5 different density values.
For each class10 instances are generated and10 independent
runs are performed on each instance; thus the results for each
class are the averages over100 runs. All the algorithms stop if
they find a solution or if a maximum of100; 000 fitness eval-



uations is reached. In order to compare the algorithms two
performance measures are used: the percentage of runs that
found a solution, called success rate (SR), and the average
number of fitness evaluations to solution (AES) in success-
ful runs3.

den- alg. tightness
sity 0.1 0.3 0.5 0.7 0.9

Esp-GA 1 1 1 1 0.68
H-GA.1 1 1 1 1 0.49

0.1 H-GA.2 1 1 1 1 0.46
H-GA.3 1 1 1 1 0.43
Arc-GA 1 1 1 1 0.30
Esp-GA 1 1 1 0.02 0
H-GA.1 1 1 1 0.30 0

0.3 H-GA.2 1 1 1 0.06 0
H-GA.3 1 1 1 0.05 0
Arc-GA 1 1 0.99 0 0
Esp-GA 1 1 0.04 0 0
H-GA.1 1 1 0.18 0 0

0.5 H-GA.2 1 1 0.15 0 0
H-GA.3 1 1 0.14 0 0
Arc-GA 1 1 0.04 0 0
Esp-GA 1 1 0 0 0
H-GA.1 1 1 0 0 0

0.7 H-GA.2 1 1 0 0 0
H-GA.3 1 1 0 0 0
Arc-GA 1 0.97 0 0 0
Esp-GA 1 0 0 0 0
H-GA.1 1 0.49 0 0 0

0.9 H-GA.2 1 0.36 0 0 0
H-GA.3 1 0.35 0 0 0
Arc-GA 1 0.17 0 0 0

Table 4: SR ofEsp-GA, H-GA.f1,2,3g, andArc-GA

Tables 4 and 5 give some indication of thelandscape of
solvability for the different EAs. This landscape of solvabil-
ity typically has a highSR for binary CSP instances that have
low density and/or tightness, withSRs dropping as density
and/or tightness becomes higher. The region where the al-
gorithm exhibits aphase transitionis of particular interest
since it contains hard problem instances. Themushy region
of the algorithms consists of the binary CSPs with the fol-
lowing density-tightness combinations:(0:1; 0:9), (0:3; 0:7),(0:5; 0:5), (0:7; 0:3) and (0:9; 0:3). This is in accordance
with the theoretical predictions of phase transitions for bi-
nary CSPs (cf. e.g., [22]). When looking at theSR of the
algorithms on hard instances we found thatArc-GA has the
worst success rate while bothH-GA andESP-GA find more
solutions. The only exception to this is in density-tightness
combination(0:9; 0:3) whereESP-GA finds no solutions and
Arc-GA still finds 17 solutions out of a hundred experiments.
The results indicate thatH-GA.1 outperforms the other al-

3If SR = 0 thenAES is undefined

den- alg. tightness
sity 0.1 0.3 0.5 0.7 0.9

Esp-GA 10 17 28 68 2858
H-GA.1 10 12 14 23 190

0.1 H-GA.2 11 292 907 1942 10988
H-GA.3 11 261 956 1989 13111
Arc-GA 10 18 32 77 319
Esp-GA 14 52 667 81891 -
H-GA.1 11 19 63 272 -

0.3 H-GA.2 279 2381 6567 24123 -
H-GA.3 293 2400 7087 24226 -
Arc-GA 16 50 452 - -
Esp-GA 23 268 18648 - -
H-GA.1 13 34 4205 - -

0.5 H-GA.2 998 4826 24455 - -
H-GA.3 897 4885 21430 - -
Arc-GA 92 88 955 - -
Esp-GA 31 22218 - - -
H-GA.1 17 179 - - -

0.7 H-GA.2 1621 10259 - - -
H-GA.3 1637 10284 - - -
Arc-GA 37 367 - - -
Esp-GA 43 - - - -
H-GA.1 19 1776 - - -

0.9 H-GA.2 2310 30443 - - -
H-GA.3 2314 32095 - - -
Arc-GA 46 1439 - - -

Table 5: AES ofEsp-GA, H-GA.f1,2,3g, andArc-GA

gorithms when looking atSR, with a single exception for
density-tightness combination(0:1; 0:9). When looking at
theAES of the algorithms in themushy regionwe found a
tie betweenH-GA.1 andArc-GA: in density-tightness com-
binations(0:1; 0:9), (0:3; 0:7) and(0:7; 0:3) H-GA performs
better while in density-tightness combinations(0:5; 0:5) and(0:9; 0:3) Arc-GA has the best performance. Concerning the
three versions ofH-GA, we conclude that the heuristic asex-
ual version outperforms the multi-parent crossover operator
and that the replacement in the latter algorithm of the random
mutation operator with an heuristic mutation operator based
on the asexual crossover operator does not improve the per-
formance. Based on the good performance ofH-GA.1 when
looking atSR and the fair performance when looking atAES
we conclude thatH-GA.1 is the best algorithm of the five
tested. We suspect that the success ofH-GA.1 lies in the fact
that it uses heuristic information in such a way that premature
convergence of the population is avoided while still providing
guidance for finding solutions.

5 Discussion

It is interesting to compare the results with those reportedin
[10], where three EAs using adaptive fitness functions have
been tested on the same benchmark instances as used here.



The best results in that article were obtained by the microge-
netic iterative descendent genetic algorithm (MID) of Dozier
et al [5]. MID incorporates heuristics in the reproduction
mechanism and in the fitness function in order to direct the
search towards better individuals. More precisely,MIDworks
on a pool of8 individuals. It uses a roulette-wheel based se-
lection mechanism; however, it is not generational, but hasa
steady state reproduction mechanism where at each genera-
tion an offspring is created by mutating a specific gene of the
selected chromosome, called pivot gene, and that offspring
replaces the worse individual of the actual population.

Roughly, the fitness function of a chromosome is deter-
mined by adding a suitable penalty term to the number of con-
straint violations the chromosome is involved in. The penalty
term depends on the set of break-outs whose values occur in
the chromosome. A break-out consists of two parts: 1) a pair
of values that violates a constraint; 2) a weight associatedto
that pair. The set of break-outs is initially empty and it is
modified during the execution by increasing the weights of
1 and by adding new break-outs according to the technique
used in the Iterative Descent Method [17].

In [5] it is shown thatMID outperforms the Iterative De-
scent Method algorithm [17].

den- tightness
sity 0.1 0.3 0.5 0.7 0.9

0.1 1 1 1 1 0.96
0.3 1 1 1 0.52 0
0.5 1 1 0.9 0 0
0.7 1 1 0 0 0
0.9 1 1 0 0 0

Table 6: SR forMID

den- tightness
sity 0.1 0.3 0.5 0.7 0.9

0.1 1 4 21 87 2923
0.3 3 50 323 32412 -
0.5 10 177 26792 - -
0.7 20 604 - - -
0.9 33 8136 - - -

Table 7: AES forMID

Tables 6 and 7 report SR and AES obtained byMID: the
results show thatMID has better performance than the algo-
rithms considered in this paper, both in terms of SR and AES.

The success ofMID can be explained from the fact that it
belongs to both classes of EAs mentioned in the introduction:
it uses a heuristic method incorporated into the mutation op-
erator and an adaptive mechanism which changes the fitness
function during the run. The results of the experiments seem
to indicate that the search for a solution does profit from the
combination of heuristic information and dynamic adaptation
of the fitness function.

An alternative evolutionary approach for solving CSPs is
the so-called genetic local search. In the genetic local search
approach, genetic operators act on a population of local op-
tima resulting from the application of a local search proce-
dure to each chromosome. This approach has been shown to
be rather effective for tackling NP-hard combinatorial opti-
mization problems (cf., e.g. [14]). In particular, in [15] the
authors show that a genetic local search algorithm obtained
by incorporating local search into a simple GA yields equal
or better results thanMID on the same benchmark instances as
used here. The resulting evolutionary algorithm is called Re-
pair Improve Genetic Algorithm. More specifically,RIGA is
a generational genetic algorithm with elitist selection mecha-
nism which copies the best individual of a population to the
population of the next generation [?]. A chromosome after
application of local search represents a partial solution (that
is some variables may not be instantiated, and all the con-
straints whose variables are both instantiated are satisfied).
The fitness of a chromosome is equal to the number of instan-
tiated variables in the chromosome. The genetic operators are
blind: uniform crossover and random mutation which adds or
deletes randomly selected values from the genes (thus genes
before application of local search may contain more than one
value; see [15] for more details).

Tables 8 and 9 report SR and AES obtained byRIGA.

den- tightness
sity 0.1 0.3 0.5 0.7 0.9

0.1 1 1 1 1 0.96
0.3 1 1 1 0.72 0
0.5 1 1 1 0 0
0.7 1 1 0 0 0
0.9 1 1 0 0 0

Table 8: SR forRIGA

den- tightness
sity 0.1 0.3 0.5 0.7 0.9

0.1 10 10 10 17 197
0.3 10 10 24 15604 -
0.5 10 10 6809 - -
0.7 10 42 - - -
0.9 10 588 - - -

Table 9: AES forRIGA

Observe that AES forRIGA does not take into account the
computational effort of local search, hence it is much lower
than AES ofMID. In terms of running time,MID is about five
times faster thanRIGA. Thus the computational effort ofMID
can be fairly considered less than the one ofRIGA.

In [4] it is shown that the performance ofRIGA does not
improve when the SAW-ing method is incorporated in the
selection mechanism of the GA: SAW-ing uses an on-line
fitness adjusting mechanism adaptively raising penalties of



variables that are often involved in constraint violations. This
seems to indicate that the search guidance provided by SAW-
ing is already present in the genetic local search algorithm.

6 Conclusion

The experimental study conducted in this paper together with
those reported in [10, 15] indicate that effective methods
based on evolutionary algorithms for solving random binary
CSPs need to incorporate problem knowledge, either in the
form of ad hoc genetic operators and fitness function, or in
the form of a local search procedure.

In particular, the best performance is obtained by those
evolutionary algorithms incorporating local search, either in
the genetic operators and fitness function [5], or as an external
module [15].

Bibliography

[1] R.K. Belew and L.B. Booker, editors.Proceedings
of the 4th International Conference on Genetic Algo-
rithms. Morgan Kaufmann Publishers, Inc., 1991.

[2] J. Bowen and G. Dozier. Solving constraint satisfaction
problems using a genetic/systematic search hybride that
realizes when to quit. In L.J. Eshelman, editor,Proceed-
ings of the 6th International Conference on Genetic Al-
gorithms, pages 122–129. Morgan Kaufmann Publish-
ers, Inc., 1995.

[3] P. Cheeseman, B. Kenefsky, and W.M. Taylor. Where
the really hard problems are. In J. Mylopoulos and
R. Reiter, editors,Proceedings of the 12th IJCAI, pages
331–337. Morgan Kaufmann Publishers, Inc., 1991.

[4] B.G.W. Craenen, A.E Eiben, E. Marchiori, and
A. Steenbeek. Combining local search and fitness func-
tion adaptation in a GA for solving binary constraint
satisfaction problems. InProceedings of the Genetic
and Evolutionary Computation Conference (GECCO-
2000), 2000.

[5] G. Dozier, J. Bowen, and D. Bahler. Solving small and
large constraint satisfaction problems using a heuristic-
based microgenetic algorithm. In IEEE [12], pages 306–
311.

[6] G. Dozier, J. Bowen, and D. Bahler. Solving ran-
domly generated constraint satisfaction problems using
a micro-evolutionary hybrid that evolves a population
of hill-climbers. InProceedings of the 2nd IEEE Con-
ference on Evolutionary Computation, pages 614–619.
IEEE Computer Society Press, 1995.

[7] G. Dozier, J. Bowen, and A. Homaifar. Solving con-
straint satisfaction problems using hybrid evolutionary
search. Transactions on Evolutionary Computation,
2(1):23–33, 1998.

[8] A.E. Eiben and J.K. van der Hauw. Adaptive penalties
for evolutionary graph-coloring. In J.-K. Hao, E. Lut-
ton, E. Ronald, M. Schoenauer, and D. Snyers, ed-
itors, Artificial Evolution ’97, number 1363 in Lec-
ture Notes in Computer Science, pages 95–106, Berlin,
1998. Springer-Verlag.

[9] A.E. Eiben, J.K. van der Hauw, and J.I. van Hemert.
Graph coloring with adaptive evolutionary algorithms.
Journal of Heuristics, 4(1):25–46, 1998.

[10] A.E. Eiben, J.I. van Hemert, E. Marchiori, and A.G.
Steenbeek. Solving binary constraint satisfaction prob-
lems using evolutionary algorithms with an adaptive fit-
ness function. In A.E. Eiben, Th. Bäck, M. Schoenauer,
and H.-P. Schwefel, editors,Proceedings of the 5th Con-
ference on Parallel Problem Solving from Nature, num-
ber 1498 in Lecture Notes in Computer Science, pages
196–205, Berlin, 1998. Springer-Verlag.

[11] A.E. Eiben, P-E. Raué, and Zs. Ruttkay. Solving con-
straint satisfaction problems using genetic algorithms.
In IEEE [12], pages 542–547.

[12] Proceedings of the 1st IEEE Conference on Evolution-
ary Computation. IEEE Computer Society Press, 1994.

[13] E. Marchiori. Combining constraint processing and ge-
netic algorithms for constraint satisfaction problems. In
Th. Bäck, editor,Proceedings of the 7th International
Conference on Genetic Algorithms, pages 330–337, San
Francisco, CA, 1997. Morgan Kaufmann Publishers,
Inc.

[14] E. Marchiori. A simple heuristic based genetic algo-
rithm for the maximum clique problem. InProceedings
of the ACM Symposium on Applied Computing, pages
366–373. ACM Press, 1998.

[15] E. Marchiori and A. Steenbeek. Genetic local search al-
gorithm for random binary constraint satisfaction prob-
lems. InProceedings of the ACM Symposium on Ap-
plied Computing, 2000. to appear.

[16] Z. Michalewicz and M. Schoenauer. Evolutionary al-
gorithms for constrained parameter optimization prob-
lems.Evolutionary Computation, 4(1):1–32, 1996.

[17] P. Morris. The breakout method for escaping from local
minima. In Proceedings of the 11th National Confer-
ence on Artificial Intelligence, AAAI-93, pages 40–45.
AAAI Press/The MIT Press, 1993.

[18] J. Paredis. Coevolutionary constraint satisfaction.In
Y. Davidor, H.-P. Schwefel, and R. Männer, editors,
Proceedings of the 3rd Conference on Parallel Prob-
lem Solving from Nature, number 866 in Lecture Notes
in Computer Science, pages 46–55, Berlin, 1994.
Springer-Verlag.



[19] P. Prosser. An empirical study of phase transitions in
binary constraint satisfaction problems.Journal of Ar-
tificial Intelligence, 81:81–109, 1996.

[20] M.C. Riff-Rojas. Evolutionary search guided by the
constraint network to solve CSP. In Belew and Booker
[1], pages 337–348.

[21] M.C. Riff-Rojas. Using the knowledge of the constraint
network to design an evolutionary algorithm that solves
CSP. In Belew and Booker [1], pages 279–284.

[22] B.M. Smith. Phase transition and the mushy region in
constraint satisfaction problems. In A.G. Cohn, editor,
Proceedings of the 11th European Conference on Artifi-
cial Intelligence, pages 100–104, New York, NY, 1994.
John Wiley & Sons.

[23] E.P.K. Tsang.Foundations of Constraint Satisfaction.
Academic Press Limited, 1993.

[24] P. van Hentenryck, V. Saraswat, and Y. Deville. Con-
straint processing in cc(fd). In A. Podelski, editor,
Constraint Programming: Basics and Trends. Springer-
Verlag, Berlin, 1995.

[25] C.P. Williams and T. Hogg. Exploiting the deep struc-
ture of constraint problems.Journal of Artificial Intelli-
gence, 70:73–117, 1994.


