
An Experimental Comparison of SAWing EAsfor a new Class of Random Binary CSPsB.G.W. Craenen and A.E. EibenVrije UniversiteitFa
ulty of Exa
t S
ien
esDe Boelelaan 10811081 HV AmsterdamThe NetherlandsAbstra
t - Evolutionary approa
hes to
onstraintsatisfa
tion problems (CSPs) are often tested on aset of randomly generated instan
es. Re
ently it hasbeen shown that the frequently used random prob-lem instan
e generators are not good enough. Thisimplies that
on
lusions based on the usage of thesegenerators need to be revised. In this paper, we per-form an extensive experimental
omparison of CSPsolving EAs based on a new, improved generator. Inparti
ular, we
ompare two representations, two eval-uation fun
tions and EAs with and without the so-
alled SAWing me
hanism, ea
h of these with di�er-ent population sizes and variation operators. The re-sulting systemati
 overview
on�rms some "myths",while refutes others. Most notably, the role of thepopulation size and that of SAWing itself turn out tobe di�erent from what is usually assumed.I. INTRODUCTIONCSPs form a
hallenging appli
ation area for evolu-tionary algorithms. The
hallenge
omes from two
on-siderations. First, CSPs are in general
omputationallyintra
table and therefore form a general
hallenge for de-signers of algorithms. Se
ond, in their original formula-tion CSPs have nothing to be optimised (see de�nitionsin the next se
tion). This makes EAs look inappli
a-ble to ta
kle su
h problems. The last
ouple of years ithas been shown that EA are very well
apable of solvingCSPs, e.g. graph
olouring problems, 3-SAT problems,or randomly generated instan
es. One of the o�ered evo-lutionary approa
hes to ta
kling CSPs is formed by theso-
alled SAWing EAs,
f. se
tion IV.In this paper we attempt to perform a thorough andsystemati
 experimental
omparison of su
h algorithms,varying a number of key features and relating the per-forman
e di�eren
es to these variations. The rest of thispaper is organised as follows. In se
tion II we outline thebasi
 notions of CSPs and in se
tion III we des
ribe thenew CSP generator. In se
tion IV we dis
uss penaltybased approa
hes to evolutionary
onstraint satisfa
tion.The des
ription of experiments and algorithm setups isgiven in se
tion V, followed by a summary of results in

se
tion VI. Finally, se
tion VII presents the
on
lusions.II. CSPSA
onstraint network
onsists of a set of variablesX1; : : : ; Xn with respe
tive domains D1; : : : ; Dn, and aset of
onstraints C. The Cartesian produ
t of setsD1� � � � �Dn is
alled the sear
h spa
e and denoted byS. For 2�k�n, a
onstraint
j1;:::;jk 2 C; j = 1; : : : ;mis a subset of Dj1� � � � �Djk , where the j1; : : : ; jk aredistin
t. We say that
j1;:::;jk is of arity k and that itbounds the variables Xj1 ; : : : ; Xjk and that Cj1;:::;jk isthe set of
onstraints that bound variables X1; : : : ; Xk.For
onvenien
e, we use the shorthands
j and Cj if this
annot lead to
onfusion. For a given
onstraint network,the Constraint Satisfa
tion Problem (CSP) asks for allthe n-tuples (d1; : : : ; dn) of values su
h that di 2 Di,i = 1; : : : ; n, and for every
j1;:::;jk 2 C, (dj1 ; : : : ; djk) =2
j1;:::;jk ; j = 1; : : : ;m. Su
h an n-tuple s 2 S is
alled asolution of the CSP.For an instan
e � of CSP with n variables, its
on-straint hypergraph G� has n verti
es v1; : : : ; vn, whi
h
orrespond to the variables of � and it
ontains a hyper-edge fvj1 ; : : : ; vjkg if and only if there exists a
onstraintof arity k that bounds the variables Xj1 ; : : : ; Xjk . Thefollowing
onvenient graph-theoreti
 representation of aCSP instan
e � will be used; the in
ompatibility hyper-graph of �, C�, is an n-partite hypergraph of whi
h theith part
orresponds to variable Xi of � whi
h has ex-a
tly jDij verti
es, one for ea
h value in Di. In C� thereexists a hyperedge fvj1 ; : : : ; vjkg, if and only if the
or-responding values dj1 2 Dj1 , dj2 2 Dj2 ; : : : ; djk 2 Djkare in (not allowed by) some
onstraint that bounds the
orresponding variables. Hen
e, the de
ision version ofCSP is equivalent to asking if there exists a set of ver-ti
es in C
ontaining exa
tly one vertex from ea
h partwhile not `
ontaining' any hyperedge, i.e., if there existsan independent set with one vertex from ea
h part1.Note that for the sake of simpli
ity we study binary1The supers
ript from both the
onstraint and the in
ompatibil-ity hypergraph will be omitted when it is
lear from the
ontextwhat instan
e is referred too

CSPs where all
onstraints have arity k = 2 (bound twovariables) and where all the variable domains
ontain thesame number of values D. We adhere to this simpli�
a-tion be
ause it restri
ts experimental
omplexity and ev-ery CSP of arity larger than two has an equivalent binaryCSP ([6℄). III. CSP GENERATORSIn [1℄, A
hlioptas et al. show that the so-
alled ModelsA to D (de�ned below) are unsuitable for the study ofphase transition and threshold phenomena su
h as CSPs.This is be
ause the instan
es they asymptoti
ally gener-ate have almost
ertainly no solutions. A general frame-work for these models, presented in [4℄, [5℄ generates in-stan
es in two steps:Step 1: Either (i) ea
h one of the �n2� edges is sele
tedto be in G independently of all other edges with proba-bility p1 (
onstraint density), or (ii) we uniformly sele
ta random set of edges of size p1�n2�.Step 2: Either (i) for every edge of G ea
h one of theD2 edges in C is sele
ted with probability p2 (
onstrainttightness), or (ii) for every edge of G we uniformly sele
ta random set of edges in C of size p2D2Combining the options for the two sets, we get fourslightly di�erent models for generating random CSPs, inparti
ular, in the terminology used in [5℄, if both Step 1and 2 are done with option (i), we get Model A, while ifboth steps are done with option (ii), we get Model B.As A
hlioptas et al. show in [1℄ Model A generatesalmost
ertainly unsatis�able instan
es for every p2 6= 0,while Model B generates almost
ertainly unsatis�ableinstan
es for every p2 � 1=D (analogously for the othertwo models). In the same paper an alternative model forgenerating random CSP instan
es is proposed. The newmodel (Model E) does not su�er from the de�
ien
iesunderlying the other models. This model resembles themodel used for generating random Boolean formulas forthe satis�ability problem and the
onstraints it generatesare similar to the `nogoods' proposed by Williams andHogg ([7℄). This model is de�ned as:De�nition 1: C� is a random n-partite graph with Dverti
es in ea
h part
onstru
ted by uniformly, indepen-dently and with repetitions sele
ting m = p �nk�Dk hy-peredges out of the �nk�Dk possible ones, with k = 2 forbinary
onstraint networks. Also, let r = m=n denote theratio of the sele
ted edges to the number of variables.Su
h a model
an be fully spe
i�ed as E(n;m;D; k),where n is the number of variables, m is the numberof
onstraints, D is the number of values in ea
h domainand k is the arity of ea
h
onstraint. Informally one
ouldsay that Model E works by
hoosing uniformly, indepen-dently and with repetitions
on
i
ts between two valuesof two di�erent variables.

It was known for Model A to D, that, when one of theirparameters was varied, the generated CSP would ex-hibit a so
alled phase transition, where problems
hangefrom being relatively easy to solve to being very easyto prove unsolvable. The region where the probabilitythat a problem is soluble
hanges from almost zero toalmost one is generally indi
ated as the mushy region.In the mushy region, problems are in general diÆ
ultto solve or prove unsolvable and therefore of parti
u-lar interest when
omparing di�erent algorithms for ef-�
ien
y. Model E also exhibits a phase transition whenone of its variables is
hanged and there are boundingformulas for the mushy region. In this paper, all CSPinstan
es are generated using Model E with n = 15 vari-ables, domain size D = 15, k = 2, probabilities from theset f0:20; 0:22; 0:24; 0:26; 0:28; 0:30; 0:32; 0:34; 0:36; 0:38g,and the
orresponding values of m (see De�nition 1).This puts all generated instan
es in the mushy region.IV. PENALTIES AND THEIR ADAPTATIONIn prin
iple, every penalty fun
tion is an (heuristi
) es-timate of the badness of a given
andidate solution. Su
hheuristi
s usually try to estimate the distan
e to feasiblesolution, or the
osts of repairing the unfeasibility. Twobasi
 types of estimations, thus penalty fun
tions, areused very often: penalty for violated
onstraints and,penalty for wrongly instantiated variables.For a formal des
ription let us assume that we have
onstraints
i (i 2 f1; : : : ;mg), variables vj (j 2f1; : : : ; ng), and let Ci be the set of
onstraints involv-ing variable vi. Then the penalties relative to the twooptions above des
ribed
an be expressed as follows:f1(s) = mXi=1 wi � �(s;
i); (1)where�(s;
i) = � 1 if s violates
i0 otherwiserespe
tively f2(s) = nXi=1 wi � �(s; Ci); (2)where�(s; Ci) = � 1 if s violates at least one
 2 Ci0 otherwiseObviously, for the above fun
tions f1; f2 and for ea
hs 2 S we have that s is a solution if and only if fi(s) = 0.These de�nitions are independent from any given repre-sentation.The Stepwise Adaptation of Weights (SAW) as a gen-eral me
hanism to handle
onstraints in an EA, has beenintrodu
ed by Eiben and van der Hauw [3℄. The original

Expr.nr. Fitness Representation Pop.size Crossover1 Variable + SAW Integer 12,3,4 10 1 point, uniform, 4 parent diagonal5,6,7 100 1 point, uniform, 4 parent diagonal8 Variable + SAW Permutation 19,10,11 10 Order1, Cy
le, Pmx12,13,14 100 Order1, Cy
le, Pmx15 Constraint + SAW Integer 116,17,18 10 1 point, uniform, 4 parent diagonal19,20,21 100 1 point, uniform, 4 parent diagonal22 Constraint + SAW Permutation 123,24,25 10 Order1, Cy
le, Pmx26,27,28 100 Order1, Cy
le, Pmx29 Variable, no SAW Integer 130,31,32 10 1 point, uniform, 4 parent diagonal33,34,35 100 1 point, uniform, 4 parent diagonal36 Variable, no SAW Permutation 137,38,39 10 Order1, Cy
le, Pmx40,41,42 100 Order1, Cy
le, Pmx43 Constr, no SAW Integer 144,45,46 10 1 point, uniform, 4 parent diagonal47,48,49 100 1 point, uniform, 4 parent diagonal50 Constr, no SAW Permutation 151,52,53 10 Order1, Cy
le, Pmx54,55,56 100 Order1, Cy
le, PmxTABLE IExperimental setup for the different runsidea behind the me
hanism is that
onstraints that arenot satis�ed after a
ertain number of steps must be hard,thus must be given a high weight (penalty). This te
h-nique was su

essful in solving 3-SAT problems, graph3-
olouring problems and random binary CSPs, see [2℄for an overview.Te
hni
ally, the SAW me
hanism is an add-on to theabove �tness fun
tion de�nitions amounting to revise theweights during a run, based on the status of the sear
hpro
ess. This feature is mostly implemented by paus-ing the algorithm at regular intervals, e.g. after Tp �t-ness evaluations, and adding a
onstant in
rement �w toea
h wi that belongs to a violated
onstraint (or wronglyinstantiated variable) in the best individual.Setting the in
rement �w to 1, the
orrespondingweight update me
hanisms
an be formally des
ribed asfollows:wi wi + �(X�;
i) for i 2 f1; : : : ;mg (SAW
on)respe
tivelywi wi + �(X�; Ci) for i 2 f1; : : : ; ng (SAWvar)with X� denoting the best individual in the populationfound so far.The algorithms reported in the literature used a �tnessfun
tion of type 1 (see equation 1) for the 3-SAT and therandom binary CSP appli
ation, and a �tness fun
tion oftype 2 (see equation 2) for graph
olouring. A remarkable

feature of these algorithms is the very small populations,in some appli
ations population size 1 turned out to beoptimal. V. EXPERIMENTSIn the present study we are investigating several as-pe
ts of
onstraint solving EAs. First, we are interestedin the di�eren
es between algorithms using a �tness fun
-tion of the �rst type (
onstraint-based) and the se
ondtype (variable-based). Se
ond, we
ompare the e�e
ts ofusing two di�erent representations. The integer repre-sentation is rather straightforward: ea
h individual haslength n (the number of variables) and the domain ofthe given variable forms the set of possible values forthat position. In the order-based representation, an in-dividual is a permutation of the variables and a simplede
oder is used to assign domain values to ea
h vari-able in the order they appear in a given permutation.The de
oder sequentially takes variables from the per-mutation and tries to instantiate it with values that donot violate any
onstraints that bind already instantiatedvariables. If the de
oder does not �nd su
h a value, thevariable is left uninstantiated2, note therefore that thede
oder only sear
hes the feasible portion of the sear
hspa
e. The third aspe
t we look at is the populationsize. The �rst SAWing EA appli
ations suggested that2Te
hni
ally, it is instantiated to a spe
ial value indi
ating a
on-
i
t.

Exp. 17 Exp. 3 Exp. 26 Exp. 12f1, integer f2, integer f1, order-based f2, order-basedSR AES SR AES SR AES SR AES0.20 0.8 1452.7 0.948 1053.59 1 100 1 1000.22 0.62 2119.25 0.868 1635.91 1 100 1 1000.24 0.328 1664.32 0.724 2825.83 1 100.52 1 100.520.26 0.176 1447.68 0.38 5026.57 1 114.136 1 112.3280.28 0.068 3407.18 0.112 6553 1 232.808 1 232.0960.30 0.016 1575 0.072 4328.11 1 966.52 1 1045.420.32 0.004 1492 0.012 4392 1 4036.66 0.988 3804.410.34 0 - 0.004 860 0.696 18836.3 0.688 14942.20.36 0 - 0 - 0.284 22861.6 0.296 19497.50.38 0 - 0 - 0.024 48761.7 0.02 49700.8TABLE IIComparing
onstraint and variable based penalties, f1 vs. f2, with SAWingExp. 29 Exp. 36 Exp. 33 Exp. 40int. pop.size 1 order b. pop.size 1 int, pop.size 100 order b. pop.size 100SR AES SR AES SR AES SR AES0.2 1 408 1 8.912 1 2716.24 1 1000.22 1 552.688 1 15.676 1 3519.84 1 1000.24 1 866.604 1 37.012 1 4760.56 1 100.520.26 0.992 1345.85 1 82.024 0.972 8386.91 1 115.6480.28 0.972 3429.6 1 209.412 0.828 12037.8 1 231.3520.3 0.796 6098.46 1 799.608 0.576 17521.4 1 914.0640.32 0.596 9886.1 1 3006.65 0.268 18338.5 0.988 3878.970.34 0.22 9140.64 0.8 12394.2 0.14 19656.6 0.66 123390.36 0.064 16395.3 0.32 13891.4 0.048 18953.3 0.24 14592.80.38 0.024 1819.33 0.024 14450.8 0.008 24270 0.012 50946TABLE IIIComparing integer and order-based representation with f2, no SAW, population size 1 and population size 100a (1+1) s
heme is a good heuristi
 setting. To
he
kif this suggestion is still valid with the new problem in-stan
es, we run all algorithm variants with populationsizes 1, 10 and 100. Fourth, we investigate the e�e
ts ofthe SAW me
hanism itself. Although the SAW me
ha-nism has been used in di�erent appli
ations and settings(i.e. �tness fun
tion and representation type), so far, nosystemati
 investigation of all
ombinations of these set-tings has been published. Here we run all experimentswith and without the weight adaptation me
hanism onthe new problem instan
es, meanwhile
reating a
om-prehensive ben
hmark set for future work. Finally, wetry a number of
rossovers for those algorithms with apopulation size greater than 1. For the integer repre-sentation we try 1 point-, uniform-, 4 parent diagonal
rossovers, while for the order-based representation weexperiment with Order1, Cy
le, and Pmx
rossover. The
omplete overview of all experiments is given in table I.There are also a number of shared features amongour algorithm variants. The maximum number of �tnessevaluations is always 100.000 and we use linear rankingsele
tion with bias: b = 1.5. For the SAWing variants,the weight update period is set to Tp = 250 evaluations

and �w = 1 is used. The mutation operator for inte-ger representation
hooses a variable to be mutated anda new value for this variable uniform randomly. For theorder-based algorithms we use a swap mutation operator.As mentioned in se
tion II, we use a set of 10 di�er-ent probabilities for the Model E CSP generator. Withea
h of these probabilities we generate 25 instan
es andperform 10 runs over ea
h instan
e, resulting in 250 runsfor every p value for ea
h algorithm variant. Thus, oneexperiment, identi�ed with a number in table I,
onsistsof 2500 runs for the given algorithmi
 setup.We use two measures of
omparison for the algorithms.First the Su

ess Rate (SR), indi
ating the per
entage ofthe runs that were
ompleted with a solution. Se
ond,the Average number of Evaluations to a Solution (AES),together with its standard deviation. This measure isonly de�ned when a solution was found. As a se
ondarymeasure AES is important as an indi
ation of the speedof the algorithm. VI. RESULTSSpa
e limitations do not allow us to present all exper-imental results here. Therefore, we restri
t ourselves to

Exp. 22 Exp. 23 Exp. 26pop. size 1 pop. size 10 pop.size 100SR AES SR AES SR AES0.2 1 8.912 1 10.552 1 1000.22 1 15.676 1 13.088 1 1000.24 1 37.656 1 26.784 1 100.520.26 0.968 74.5579 1 63.616 1 114.1360.28 0.792 115.884 1 279.928 1 232.8080.3 0.44 142.582 0.964 3781.09 1 966.520.32 0.24 201.217 0.74 13439.8 1 4036.660.34 0.076 193.053 0.352 15759 0.696 18836.30.36 0.012 223.33 0.108 17877 0.284 22861.60.38 0 - 0.004 4420 0.024 48761.7TABLE IVThe effe
t of population size for order-based representation using
onstraint based penalties.Exp. 54 Exp. 26 Exp. 40 Exp. 12f1, no SAW f1, SAW f2, no SAW f2, SAWSR AES SR AES SR AES SR AES0.2 1 100 1 100 1 100 1 1000.22 1 100 1 100 1 100 1 1000.24 1 100.52 1 100.52 1 100.52 1 100.520.26 1 115.648 1 114.136 1 115.648 1 112.3280.28 1 231.352 1 232.808 1 231.352 1 232.0960.3 1 914.064 1 966.52 1 914.064 1 1045.420.32 0.988 3878.97 1 4036.66 0.988 3878.97 0.988 3804.410.34 0.66 12339 0.696 18836.3 0.66 12339 0.688 14942.20.36 0.24 14592.8 0.284 22861.6 0.24 14592.8 0.296 19497.50.38 0.012 50946 0.024 48761.7 0.012 50946 0.02 49700.8TABLE VThe effe
t of SAWing for order-based representation using population size 100 and order1
rossover.presenting the out
omes that ba
k-up our most interest-ing �ndings.It seems to have little e�e
t in
hanging between
onstraint- and variable-based penalty (�tness) fun
-tions. Without SAWing there is no di�eren
e at allwhile with SAWing and order-based representation thedi�eren
es are small with a slight advantage of
onstraintbased penalties (table II right two
olumns). With SAW-ing and integer representation, variable based penaltieswork better (table II left two
olumns).As for the representation, it is
learly proven that theorder-based representation (together with the de
oder)is superior to the straightforward integer representation:higher SR, lower AES and standard deviation (not shownhere), see table III.The optimal population size is
learly related to theSAWing feature. For all algorithms using no SAWing,the optimal population size is 1. Nevertheless, for allalgorithms using SAWing, the optimal population size isthe largest one among those tested: 100. In table IV wegive an illustration for order-based representation using
onstraint based penalties.The e�e
t of SAWing is again related to the represen-tation and, to our surprise, also to the population size.

In
ase of integer representation and order-based repre-sentation with small population sizes (1 or 10) it doesnot improve performan
e. For order-based representa-tion and population size 100 it does so for both penaltys
hemes,
f. table V.VII. CONCLUSIONSThe systemati
 and thorough experimentation re-ported in this paper
on�rms some "myths", while re-futes others. The superiority of the order-based repre-sentation has been
on�rmed by all pairwise
ompar-isons of
orresponding algorithm variants. Apparently,the
ombination of a smaller sear
h spa
e (15! vs. 1515)and the de
oder { be it very simple { make the order-based EAs so powerful that no feature within the inte-ger based variants
an
ompensate their advantage. Tothis end, it is remarkable that for the easiest instan
es(p 2 f0:2; : : : ; 0:26g) a solution is found in the initialpopulation or the �rst generation (AES is around 100),meaning that (almost) no sear
h is required { randomlygenerated
hromosomes
an be de
oded to good solu-tions.For illustration see table III. With population size1 (experiment 36) it takes less than 100 generations

Experiment 26, SAWing Experiment 36, no SAWingSR AES Std. Deviation SR AES Std. Deviation0.2 1 100 0 1 8.912 9.467780.22 1 100 0 1 15.676 15.63190.24 1 100.52 4.86294 1 37.012 42.92660.26 1 114.136 43.1245 1 82.024 77.48730.28 1 232.808 290.339 1 209.412 282.4860.3 1 966.52 2344.56 1 799.608 2014.320.32 1 4036.66 7707.84 1 3006.65 5130.010.34 0.696 18836.3 26730.8 0.8 12394.2 18062.90.36 0.284 22861.6 27187.2 0.32 13891.4 18001.80.38 0.024 48761.7 35177.1 0.024 14450.8 8015.43TABLE VIComparing the best SAWing and non SAWing algorithm variants(mutation-sele
tion
y
les) to �nd a solution. For pop-ulation size 100 (experiment 40) a solution is found ineither in the initial population (AES=100) or in the �rstpopulation (100 � AES � 200). This suggests that thede
oder delivers the greatest problem solving power, therole of evolutionary sear
h seems to be se
ondary.Somewhat surprisingly, we found only small di�eren
esbetween using penalties based on
onstraints (f1) andvariables (f2). The number of
onstraints is mu
h largerthan the number of variables, therefore f1 should
arrymore information, but this does not seem to be
ru
ial.Looking at the e�e
ts of the population size also yieldssome surprising fa
ts. Contrary to previous suggestionsin the literature ([3℄, [2℄) the optimal population size forthe SAWing EAs is larger than 1. Among the valuestested here 10 was optimal for the integer representa-tion and 100 for order-based representation. However,this observation does not hold for EAs without SAW-ing, where all variants performed best with the (1+1)setup: population size 1, no
rossover, only mutation.Re
all, that a SAWing EA is working on two tasks si-multaneously: solving the given CSP and �nding appro-priate settings for the weights in the �tness fun
tion. Itseems that this se
ond task is performed better whenusing large populations.As for the geneti
 operators we
an
on
lude that uni-form
rossover is preferable for integer representation andorder1 for order-based.Finally, the
omparisons of algorithm variants withand without SAWing also led to unexpe
ted results.SAWing seems to o�er an advantage only for the order-based EAs with a large population,
f. table V. Further-more, the best algorithm without SAWing (experimentsetup 36) is better than the best one with SAWing (ex-periment setup 26), see table VI. To this end, let us notethat we did not optimise the parameters Tp and �w ofthe SAWing pro
edure, just used previously suggestedvalues.The out
omes of this investigation should also be
on-

sidered from the perspe
tive of the used problem in-stan
es. We generated these instan
es by a re
ently pro-posed problem instan
e generator that eliminates seriousde�
ien
ies of generators used before. However, for thenew generator, there are no published results in evolu-tionary
omputation yet. This study therefore also servesas a ben
hmark for future
omparative resear
h. Thegenerator and also all problem instan
es we used
an bedownloaded from www.
s.vu.nl/~b
raenen.Ongoing resear
h is following the hints given by 3-SAT appli
ations of SAWing EAs. In parti
ular, (1 + �)s
hemes proved to be better than the simple (1+1) setup.Furthermore, the value of � also had a
lear e�e
t on per-forman
e and in this setting SAWing was
ertainly ad-vantageous. It is an interesting question whether su
h ob-servations also hold on randomly generated binary CSPs.Referen
es[1℄ D. A
hlioptas, L.M. Kirousis, E. Kranakis, D. Krizan
, M.S.O.Molloy, and Y.C. Stamatiou. Random
onstraint satisfa
tion:A more a

urate pi
ture. In G. Smolka, editor, Prin
iples andPra
ti
e of Constraint Programming | CP97, number 1330in Le
ture Notes in Computer S
ien
e, pages 107{120, Berlin,1997. Springer-Verlag.[2℄ A.E. Eiben and J.I. van Hemert. SAW-ing EAs: Adapting the�tness fun
tion for solving
onstrainted problems. In D. Corne,M. Dorigo, and F. Glover, editors, New Ideas in Optimization,pages 389{402. M
Graw-Hill, 1999.[3℄ A.E. Eiben and J.K. van der Hauw. Graph
oloring with adap-tive geneti
 algorithms. Te
hni
al report, Leiden University,November 1996.[4℄ P. Prosser. An empiri
al study of phase transitions in binary
onstraint satisfa
tion problems. Journal of Arti�
ial Intelli-gen
e, 81:81{109, 1996.[5℄ B.M. Smith and M.E. Dyer. Lo
ating the phase transition inbinary
onstraint satisfa
tion problems. Journal of Arti�
ialIntelligen
e, 81(1-2):155{181, 1996.[6℄ E.P.K. Tsang. Foundations of Constraint Satisfa
tion. A
a-demi
 Press Limited, 1993.[7℄ C.P. Williams and T. Hogg. Exploiting the deep stru
ture of
onstraint problems. Journal of Arti�
ial Intelligen
e, 70:73{117, 1994.

