An Experimental Comparison of SAWing EAs

for a new Class of Random Binary CSPs
B.G.W. Craenen and A.E. Eiben

Vrije Universiteit
Faculty of Exact Sciences
De Boelelaan 1081
1081 HV Amsterdam
The Netherlands

Abstract - Evolutionary approaches to constraint
satisfaction problems (CSPs) are often tested on a
set of randomly generated instances. Recently it has
been shown that the frequently used random prob-
lem instance generators are not good enough. This
implies that conclusions based on the usage of these
generators need to be revised. In this paper, we per-
form an extensive experimental comparison of CSP
solving EAs based on a new, improved generator. In
particular, we compare two representations, two eval-
uation functions and EAs with and without the so-
called SAWing mechanism, each of these with differ-
ent population sizes and variation operators. The re-
sulting systematic overview confirms some "myths”,
while refutes others. Most notably, the role of the
population size and that of SAWing itself turn out to
be different from what is usually assumed.

I. INTRODUCTION

CSPs form a challenging application area for evolu-
tionary algorithms. The challenge comes from two con-
siderations. First, CSPs are in general computationally
intractable and therefore form a general challenge for de-
signers of algorithms. Second, in their original formula-
tion CSPs have nothing to be optimised (see definitions
in the next section). This makes EAs look inapplica-
ble to tackle such problems. The last couple of years it
has been shown that EA are very well capable of solving
CSPs, e.g. graph colouring problems, 3-SAT problems,
or randomly generated instances. One of the offered evo-
lutionary approaches to tackling CSPs is formed by the
so-called SAWing EAs, cf. section IV.

In this paper we attempt to perform a thorough and
systematic experimental comparison of such algorithms,
varying a number of key features and relating the per-
formance differences to these variations. The rest of this
paper is organised as follows. In section IT we outline the
basic notions of CSPs and in section III we describe the
new CSP generator. In section IV we discuss penalty
based approaches to evolutionary constraint satisfaction.
The description of experiments and algorithm setups is
given in section V, followed by a summary of results in

section VI. Finally, section VII presents the conclusions.

II. CSPS

A constraint network consists of a set of variables
X1,..., X, with respective domains D1q,...,D,, and a
set of constraints C. The Cartesian product of sets
Dyx --- x D, is called the search space and denoted by
S. For 2<k<n, a constraint ¢j,,..j, € C,j =1,...,m
is a subset of Dj x --- x Dj,, where the ji,...,ji are
distinct. We say that cj, ..., is of arity k& and that it
bounds the variables Xj,,..., X;, and that C/-J is
the set of constraints that bound variables Xy, ..., Xj.
For convenience, we use the shorthands ¢; and C7 if this
cannot lead to confusion. For a given constraint network,
the Constraint Satisfaction Problem (CSP) asks for all
the n-tuples (di,...,d,) of values such that d; € D;,
i =1,...,n, and for every c;,._j. € C, (dj,,...,d;.) ¢
Cjr,gurd = 1,...,m. Such an n-tuple s € S is called a
solution of the CSP.

For an instance IT of CSP with n variables, its con-
straint hypergraph G has n vertices vy,...,v,, which
correspond to the variables of II and it contains a hyper-
edge {vj,,...,vj, } if and only if there exists a constraint
of arity k£ that bounds the variables Xj, ,..., X;, . The
following convenient graph-theoretic representation of a
CSP instance IT will be used; the incompatibility hyper-
graph of II, C', is an n-partite hypergraph of which the
ith part corresponds to variable X; of II which has ex-
actly |D;| vertices, one for each value in D;. In C™ there
exists a hyperedge {vj,,...,vj, }, if and only if the cor-
responding values d;, € Dj,, dj, € Dj,,...,d;, € Dj,
are in (not allowed by) some constraint that bounds the
corresponding variables. Hence, the decision version of
CSP is equivalent to asking if there exists a set of ver-
tices in C' containing exactly one vertex from each part
while not ‘containing’ any hyperedge, i.e., if there exists
an independent set with one vertex from each part'.

Note that for the sake of simplicity we study binary

IThe superscript from both the constraint and the incompatibil-
ity hypergraph will be omitted when it is clear from the context
what instance is referred too

CSPs where all constraints have arity & = 2 (bound two
variables) and where all the variable domains contain the
same number of values D. We adhere to this simplifica-
tion because it restricts experimental complexity and ev-
ery CSP of arity larger than two has an equivalent binary

CSP ([6)).

III. CSP GENERATORS

In [1], Achlioptas et al. show that the so-called Models
A to D (defined below) are unsuitable for the study of
phase transition and threshold phenomena such as CSPs.
This is because the instances they asymptotically gener-
ate have almost certainly no solutions. A general frame-
work for these models, presented in [4], [5] generates in-
stances in two steps:

Step 1: Either (i) each one of the (1) edges is selected
to be in G independently of all other edges with proba-
bility p1 (constraint density), or (ii) we uniformly select
a random set of edges of size p; (’2‘)

Step 2: Either (i) for every edge of G each one of the

D? edges in C is selected with probability ps (constraint
tightness), or (ii) for every edge of G we uniformly select
a random set of edges in C' of size py D?
Combining the options for the two sets, we get four
slightly different models for generating random CSPs, in
particular, in the terminology used in [5], if both Step 1
and 2 are done with option (%), we get Model A, while if
both steps are done with option (ii), we get Model B.

As Achlioptas et al. show in [1] Model A generates
almost certainly unsatisfiable instances for every ps # 0,
while Model B generates almost certainly unsatisfiable
instances for every p, > 1/D (analogously for the other
two models). In the same paper an alternative model for
generating random CSP instances is proposed. The new
model (Model E) does not suffer from the deficiencies
underlying the other models. This model resembles the
model used for generating random Boolean formulas for
the satisfiability problem and the constraints it generates
are similar to the ‘nogoods’ proposed by Williams and
Hogg ([7]). This model is defined as:

Definition 1: C" is a random n-partite graph with D
vertices in each part constructed by uniformly, indepen-
dently and with repetitions selecting m = p (}) D* hy-
peredges out of the (:)Dk possible ones, with k = 2 for
binary constraint networks. Also, let r = m/n denote the
ratio of the selected edges to the number of variables.
Such a model can be fully specified as E(n,m, D, k),
where n is the number of variables, m is the number
of constraints, D is the number of values in each domain
and k is the arity of each constraint. Informally one could
say that Model E works by choosing uniformly, indepen-
dently and with repetitions conflicts between two values
of two different variables.

Tt was known for Model A to D, that, when one of their
parameters was varied, the generated CSP would ex-
hibit a so called phase transition, where problems change
from being relatively easy to solve to being very easy
to prove unsolvable. The region where the probability
that a problem is soluble changes from almost zero to
almost one is generally indicated as the mushy region.
In the mushy region, problems are in general difficult
to solve or prove unsolvable and therefore of particu-
lar interest when comparing different algorithms for ef-
ficiency. Model E also exhibits a phase transition when
one of its variables is changed and there are bounding
formulas for the mushy region. In this paper, all CSP
instances are generated using Model E with n = 15 vari-
ables, domain size D = 15, k = 2, probabilities from the
set {0.20,0.22,0.24,0.26, 0.28,0.30,0.32,0.34, 0.36, 0.38},
and the corresponding values of m (see Definition 1).
This puts all generated instances in the mushy region.

IV. PENALTIES AND THEIR ADAPTATION

In principle, every penalty function is an (heuristic) es-
timate of the badness of a given candidate solution. Such
heuristics usually try to estimate the distance to feasible
solution, or the costs of repairing the unfeasibility. Two
basic types of estimations, thus penalty functions, are
used very often: penalty for violated constraints and,
penalty for wrongly instantiated variables.

For a formal description let us assume that we have
constraints ¢; (i € {1,...,m}), variables v; (j €
{1,...,n}), and let C? be the set of constraints involv-
ing variable v;. Then the penalties relative to the two
options above described can be expressed as follows:

fi(s) = sz X Xx(8,¢i), (1)

where

(s,01) = 1 if s violates ¢;
X\ € =90 otherwise
respectively
f2(5) :Zwi XX(S,Ci), (2)
=1
where

1 if s violates at least one ¢ € C*
0 otherwise

(5.0 = {

Obviously, for the above functions fi, fo and for each
s € S we have that s is a solution if and only if f;(s) = 0.
These definitions are independent from any given repre-
sentation.

The Stepwise Adaptation of Weights (SAW) as a gen-
eral mechanism to handle constraints in an EA, has been
introduced by Eiben and van der Hauw [3]. The original

[Expr.nr. | Fitness | Representation | Pop.size | Crossover |

1 Variable + SAW Integer 1

2,3,4 10 1 point, uniform, 4 parent diagonal
5,6,7 100 1 point, uniform, 4 parent diagonal
8 Variable + SAW Permutation 1

9,10,11 10 Orderl, Cycle, Pmx
12,13,14 100 Orderl, Cycle, Pmx

15 Constraint + SAW Integer 1

16,17,18 10 1 point, uniform, 4 parent diagonal
19,20,21 100 1 point, uniform, 4 parent diagonal
22 Constraint + SAW Permutation 1

23,24,25 10 Orderl, Cycle, Pmx
26,27,28 100 Orderl, Cycle, Pmx

29 Variable, no SAW Integer 1

30,31,32 10 1 point, uniform, 4 parent diagonal
33,34,35 100 1 point, uniform, 4 parent diagonal
36 Variable, no SAW Permutation 1

37,38,39 10 Orderl, Cycle, Pmx
40,41,42 100 Orderl, Cycle, Pmx

43 Constr, no SAW Integer 1

44,45,46 10 1 point, uniform, 4 parent diagonal
47,48,49 100 1 point, uniform, 4 parent diagonal
50 Constr, no SAW Permutation 1

51,52,53 10 Orderl, Cycle, Pmx
54,55,56 100 Orderl, Cycle, Pmx

TABLE I

EXPERIMENTAL SETUP FOR THE DIFFERENT RUNS

idea behind the mechanism is that constraints that are
not satisfied after a certain number of steps must be hard,
thus must be given a high weight (penalty). This tech-
nique was successful in solving 3-SAT problems, graph
3-colouring problems and random binary CSPs, see [2]
for an overview.

Technically, the SAW mechanism is an add-on to the
above fitness function definitions amounting to revise the
weights during a run, based on the status of the search
process. This feature is mostly implemented by paus-
ing the algorithm at regular intervals, e.g. after T}, fit-
ness evaluations, and adding a constant increment Aw to
each w; that belongs to a violated constraint (or wrongly
instantiated variable) in the best individual.

Setting the increment Aw to 1, the corresponding
weight update mechanisms can be formally described as
follows:

wi + w; + x(X*,¢;) fori e {1,...,m} (SAW_,,)
respectively
w; + w; + x(X*,C) fori € {1,...,n} (SAW,,,)

with X™* denoting the best individual in the population
found so far.

The algorithms reported in the literature used a fitness
function of type 1 (see equation 1) for the 3-SAT and the
random binary CSP application, and a fitness function of
type 2 (see equation 2) for graph colouring. A remarkable

feature of these algorithms is the very small populations,
in some applications population size 1 turned out to be
optimal.

V. EXPERIMENTS

In the present study we are investigating several as-
pects of constraint solving EAs. First, we are interested
in the differences between algorithms using a fitness func-
tion of the first type (constraint-based) and the second
type (variable-based). Second, we compare the effects of
using two different representations. The integer repre-
sentation is rather straightforward: each individual has
length n (the number of variables) and the domain of
the given variable forms the set of possible values for
that position. In the order-based representation, an in-
dividual is a permutation of the variables and a simple
decoder is used to assign domain values to each vari-
able in the order they appear in a given permutation.
The decoder sequentially takes variables from the per-
mutation and tries to instantiate it with values that do
not violate any constraints that bind already instantiated
variables. If the decoder does not find such a value, the
variable is left uninstantiated?, note therefore that the
decoder only searches the feasible portion of the search
space. The third aspect we look at is the population
size. The first SAWing EA applications suggested that

2Technically, it is instantiated to a special value indicating a con-
flict.

Fxp. 17 Fxp. 3 Fxp. 26 Fxp. 12
f1, integer f2, integer f1, order-based f2, order-based
SR AES SR AES SR AES SR AES
0.20 | 0.8 1452.7 0.948 | 1053.59 || 1 100 1 100
0.22 | 0.62 2119.25 | 0.868 | 1635.91 1 100 1 100
0.24 | 0.328 | 1664.32 | 0.724 | 2825.83 1 100.52 1 100.52
0.26 | 0.176 | 1447.68 | 0.38 5026.57 1 114.136 | 1 112.328
0.28 | 0.068 | 3407.18 | 0.112 | 6553 1 232.808 | 1 232.096
0.30 | 0.016 | 1575 0.072 | 4328.11 1 966.52 1 1045.42
0.32 | 0.004 | 1492 0.012 | 4392 1 4036.66 | 0.988 | 3804.41
0.34 | 0 - 0.004 | 860 0.696 | 18836.3 | 0.688 | 14942.2
0.36 | 0 - 0 - 0.284 | 22861.6 | 0.296 | 19497.5
038 | 0 - 0 - 0.024 | 48761.7 | 0.02 49700.8
TABLE II

COMPARING CONSTRAINT AND VARIABLE BASED PENALTIES, f1 VS.

f2, wiTH SAWING

Exp. 29 Exp. 36 Exp. 33 Exp. 40

int. pop.size 1 order b. pop.size 1 int, pop.size 100 | order b. pop.size 100

SR AES SR AES SR AES SR AES
0.2 1 408 1 8.912 1 2716.24 | 1 100
022 |1 552.688 | 1 15.676 1 3519.84 | 1 100
024 | 1 866.604 | 1 37.012 1 4760.56 | 1 100.52
0.26 | 0.992 | 1345.85 | 1 82.024 0.972 | 8386.91 | 1 115.648
0.28 | 0.972 | 3429.6 1 209.412 0.828 | 12037.8 | 1 231.352
0.3 0.796 | 6098.46 | 1 799.608 0.576 | 175214 | 1 914.064
0.32 | 0.596 | 9886.1 1 3006.65 0.268 | 18338.5 | 0.988 | 3878.97
0.34 | 0.22 9140.64 | 0.8 12394.2 0.14 19656.6 | 0.66 12339
0.36 | 0.064 | 16395.3 | 0.32 13891.4 0.048 | 18953.3 | 0.24 14592.8
0.38 | 0.024 | 1819.33 | 0.024 | 14450.8 0.008 | 24270 0.012 | 50946

TABLE III

COMPARING INTEGER AND ORDER-BASED REPRESENTATION WITH f2, NO SAW, POPULATION SIZE 1 AND POPULATION SIZE 100

a (141) scheme is a good heuristic setting. To check
if this suggestion is still valid with the new problem in-
stances, we run all algorithm variants with population
sizes 1, 10 and 100. Fourth, we investigate the effects of
the SAW mechanism itself. Although the SAW mecha-
nism has been used in different applications and settings
(i.e. fitness function and representation type), so far, no
systematic investigation of all combinations of these set-
tings has been published. Here we run all experiments
with and without the weight adaptation mechanism on
the new problem instances, meanwhile creating a com-
prehensive benchmark set for future work. Finally, we
try a number of crossovers for those algorithms with a
population size greater than 1. For the integer repre-
sentation we try 1 point-, uniform-, 4 parent diagonal
crossovers, while for the order-based representation we
experiment with Orderl, Cycle, and Pmx crossover. The
complete overview of all experiments is given in table I.

There are also a number of shared features among
our algorithm variants. The maximum number of fitness
evaluations is always 100.000 and we use linear ranking
selection with bias: b = 1.5. For the SAWing variants,
the weight update period is set to T}, = 250 evaluations

and Aw 1 is used. The mutation operator for inte-
ger representation chooses a variable to be mutated and
a new value for this variable uniform randomly. For the
order-based algorithms we use a swap mutation operator.

As mentioned in section II, we use a set of 10 differ-
ent, probabilities for the Model E CSP generator. With
each of these probabilities we generate 25 instances and
perform 10 runs over each instance, resulting in 250 runs
for every p value for each algorithm variant. Thus, one
experiment, identified with a number in table I, consists
of 2500 runs for the given algorithmic setup.

We use two measures of comparison for the algorithms.
First the Success Rate (SR), indicating the percentage of
the runs that were completed with a solution. Second,
the Average number of Evaluations to a Solution (AES),
together with its standard deviation. This measure is
only defined when a solution was found. As a secondary
measure AES is important as an indication of the speed
of the algorithm.

VI. RESULTS

Space limitations do not allow us to present all exper-
imental results here. Therefore, we restrict ourselves to

Fxp. 22 Fxp. 23 Fxp. 26
pop. size 1 pop. size 10 pop.size 100
SR AES SR AES SR AES
0.2 1 8.912 1 10.552 1 100
0.22 | 1 15.676 1 13.088 1 100
024 |1 37.656 1 26.784 1 100.52
0.26 | 0.968 | 74.5579 || 1 63.616 1 114.136
0.28 | 0.792 | 115.884 1 279.928 1 232.808
0.3 0.44 142.582 0.964 | 3781.09 1 966.52
0.32 | 0.24 201.217 0.74 13439.8 1 4036.66
0.34 | 0.076 | 193.053 0.352 | 15759 0.696 | 18836.3
0.36 | 0.012 | 223.33 0.108 | 17877 0.284 | 22861.6
0.38 | 0 - 0.004 | 4420 0.024 | 48761.7
TABLE IV

THE EFFECT OF POPULATION SIZE FOR ORDER-BASED REPRESENTATION USING CONSTRAINT BASED PENALTIES.

Exp. 54 Exp. 26 Exp. 40 Exp. 12

f1, no SAW fi, SAW f2, no SAW f2, SAW

SR AES SR AES SR AES SR AES

02 |1 100 1 100 1 100 1 100

022 | 1 100 1 100 1 100 1 100
0.24 | 1 10052 | 1 10052 || 1 10052 | 1 100.52
0.26 | 1 115.648 | 1 114.136 || 1 115.648 | 1 112.328
0.28 | 1 231.352 | 1 232.808 || 1 231.352 | 1 232.096
03 |1 914.064 | 1 966.52 || 1 914.064 | 1 1045.42
0.32 | 0.988 | 3878.97 | 1 4036.66 || 0.988 | 3878.97 | 0.988 | 3804.41
0.34 | 0.66 | 12339 | 0.696 | 18836.3 || 0.66 | 12339 | 0.688 | 14942.2
0.36 | 0.24 | 14592.8 | 0.284 | 22861.6 || 0.24 | 14592.8 | 0.296 | 19497.5
0.38 | 0.012 | 50946 | 0.024 | 48761.7 || 0.012 | 50946 | 0.02 | 49700.8

TABLE V

THE EFFECT OF SAWING FOR ORDER-BASED REPRESENTATION USING POPULATION SIZE 100 AND ORDER] CROSSOVER.

presenting the outcomes that back-up our most interest-
ing findings.

It seems to have little effect in changing between
constraint- and variable-based penalty (fitness) func-
tions. Without SAWing there is no difference at all
while with SAWing and order-based representation the
differences are small with a slight advantage of constraint
based penalties (table IT right two columns). With SAW-
ing and integer representation, variable based penalties
work better (table IT left two columns).

As for the representation, it is clearly proven that the
order-based representation (together with the decoder)
is superior to the straightforward integer representation:
higher SR, lower AES and standard deviation (not shown
here), see table III.

The optimal population size is clearly related to the
SAWing feature. For all algorithms using no SAWing,
the optimal population size is 1. Nevertheless, for all
algorithms using SAWing, the optimal population size is
the largest one among those tested: 100. In table IV we
give an illustration for order-based representation using
constraint based penalties.

The effect of SAWing is again related to the represen-
tation and, to our surprise, also to the population size.

In case of integer representation and order-based repre-
sentation with small population sizes (1 or 10) it does
not improve performance. For order-based representa-
tion and population size 100 it does so for both penalty
schemes, cf. table V.

VII. CONCLUSIONS

The systematic and thorough experimentation re-
ported in this paper confirms some ”"myths”, while re-
futes others. The superiority of the order-based repre-
sentation has been confirmed by all pairwise compar-
isons of corresponding algorithm variants. Apparently,
the combination of a smaller search space (15! vs. 15'%)
and the decoder — be it very simple — make the order-
based EAs so powerful that no feature within the inte-
ger based variants can compensate their advantage. To
this end, it is remarkable that for the easiest instances
(p € {0.2,...,0.26}) a solution is found in the initial
population or the first generation (AES is around 100),
meaning that (almost) no search is required — randomly
generated chromosomes can be decoded to good solu-
tions.

For illustration see table III. With population size
1 (experiment 36) it takes less than 100 generations

Experiment 26, SAWing Experiment 36, no SAWing
SR AES Std. Deviation | SR AES Std. Deviation
0.2 1 100 0 1 8.912 9.46778
022 | 1 100 0 1 15.676 15.6319
024 | 1 100.52 4.86294 1 37.012 42.9266
0.26 | 1 114.136 | 43.1245 1 82.024 77.4873
0.28 | 1 232.808 | 290.339 1 209.412 | 282.486
0.3 1 966.52 2344.56 1 799.608 | 2014.32
032 |1 4036.66 | 7707.84 1 3006.65 | 5130.01
0.34 | 0.696 | 18836.3 | 26730.8 0.8 12394.2 | 18062.9
0.36 | 0.284 | 22861.6 | 27187.2 0.32 13891.4 | 18001.8
0.38 | 0.024 | 48761.7 | 35177.1 0.024 | 14450.8 | 8015.43
TABLE VI

COMPARING THE BEST SAWING AND NON SAWING ALGORITHM VARIANTS

(mutation-selection cycles) to find a solution. For pop-
ulation size 100 (experiment 40) a solution is found in
either in the initial population (AES=100) or in the first
population (100 < AES < 200). This suggests that the
decoder delivers the greatest problem solving power, the
role of evolutionary search seems to be secondary.

Somewhat surprisingly, we found only small differences
between using penalties based on constraints (f;) and
variables (f2). The number of constraints is much larger
than the number of variables, therefore f; should carry
more information, but this does not seem to be crucial.

Looking at the effects of the population size also yields
some surprising facts. Contrary to previous suggestions
in the literature ([3], [2]) the optimal population size for
the SAWing EAs is larger than 1. Among the values
tested here 10 was optimal for the integer representa-
tion and 100 for order-based representation. However,
this observation does not hold for EAs without SAW-
ing, where all variants performed best with the (1+1)
setup: population size 1, no crossover, only mutation.
Recall, that a SAWing EA is working on two tasks si-
multaneously: solving the given CSP and finding appro-
priate settings for the weights in the fitness function. It
seems that this second task is performed better when
using large populations.

As for the genetic operators we can conclude that uni-
form crossover is preferable for integer representation and
orderl for order-based.

Finally, the comparisons of algorithm variants with
and without SAWing also led to unexpected results.
SAWing seems to offer an advantage only for the order-
based EAs with a large population, cf. table V. Further-
more, the best algorithm without SAWing (experiment
setup 36) is better than the best one with SAWing (ex-
periment setup 26), see table VI. To this end, let us note
that we did not optimise the parameters T), and Aw of
the SAWing procedure, just used previously suggested
values.

The outcomes of this investigation should also be con-

sidered from the perspective of the used problem in-
stances. We generated these instances by a recently pro-
posed problem instance generator that eliminates serious
deficiencies of generators used before. However, for the
new generator, there are no published results in evolu-
tionary computation yet. This study therefore also serves
as a benchmark for future comparative research. The
generator and also all problem instances we used can be
downloaded from www.cs.vu.nl/~bcraenen.

Ongoing research is following the hints given by 3-
SAT applications of SAWing EAs. In particular, (1+ A)
schemes proved to be better than the simple (1+1) setup.
Furthermore, the value of A also had a clear effect on per-
formance and in this setting SAWing was certainly ad-
vantageous. It is an interesting question whether such ob-
servations also hold on randomly generated binary CSPs.

References

[1] D. Achlioptas, L.M. Kirousis, E. Kranakis, D. Krizanc, M.S.O.
Molloy, and Y.C. Stamatiou. Random constraint satisfaction:
A more accurate picture. In G. Smolka, editor, Principles and
Practice of Constraint Programming — CP97, number 1330
in Lecture Notes in Computer Science, pages 107-120, Berlin,
1997. Springer-Verlag.

[2] A.E. Eiben and J.I. van Hemert. SAW-ing EAs: Adapting the
fitness function for solving constrainted problems. In D. Corne,
M. Dorigo, and F. Glover, editors, New Ideas in Optimization,
pages 389-402. McGraw-Hill, 1999.

[3] A.E. Eiben and J.K. van der Hauw. Graph coloring with adap-
tive genetic algorithms. Technical report, Leiden University,
November 1996.

[4] P. Prosser. An empirical study of phase transitions in binary
constraint satisfaction problems. Journal of Artificial Intelli-
gence, 81:81-109, 1996.

[5] B.M. Smith and M.E. Dyer. Locating the phase transition in
binary constraint satisfaction problems. Journal of Artificial
Intelligence, 81(1-2):155-181, 1996.

[6] E.P.K. Tsang. Foundations of Constraint Satisfaction. Aca-
demic Press Limited, 1993.

[7] C.P. Williams and T. Hogg. Exploiting the deep structure of
constraint problems. Journal of Artificial Intelligence, 70:73—
117, 1994.

