
An Experimental Comparison of SAWing EAsfor a new Class of Random Binary CSPsB.G.W. Craenen and A.E. EibenVrije UniversiteitFaulty of Exat SienesDe Boelelaan 10811081 HV AmsterdamThe NetherlandsAbstrat - Evolutionary approahes to onstraintsatisfation problems (CSPs) are often tested on aset of randomly generated instanes. Reently it hasbeen shown that the frequently used random prob-lem instane generators are not good enough. Thisimplies that onlusions based on the usage of thesegenerators need to be revised. In this paper, we per-form an extensive experimental omparison of CSPsolving EAs based on a new, improved generator. Inpartiular, we ompare two representations, two eval-uation funtions and EAs with and without the so-alled SAWing mehanism, eah of these with di�er-ent population sizes and variation operators. The re-sulting systemati overview on�rms some "myths",while refutes others. Most notably, the role of thepopulation size and that of SAWing itself turn out tobe di�erent from what is usually assumed.I. INTRODUCTIONCSPs form a hallenging appliation area for evolu-tionary algorithms. The hallenge omes from two on-siderations. First, CSPs are in general omputationallyintratable and therefore form a general hallenge for de-signers of algorithms. Seond, in their original formula-tion CSPs have nothing to be optimised (see de�nitionsin the next setion). This makes EAs look inapplia-ble to takle suh problems. The last ouple of years ithas been shown that EA are very well apable of solvingCSPs, e.g. graph olouring problems, 3-SAT problems,or randomly generated instanes. One of the o�ered evo-lutionary approahes to takling CSPs is formed by theso-alled SAWing EAs, f. setion IV.In this paper we attempt to perform a thorough andsystemati experimental omparison of suh algorithms,varying a number of key features and relating the per-formane di�erenes to these variations. The rest of thispaper is organised as follows. In setion II we outline thebasi notions of CSPs and in setion III we desribe thenew CSP generator. In setion IV we disuss penaltybased approahes to evolutionary onstraint satisfation.The desription of experiments and algorithm setups isgiven in setion V, followed by a summary of results in

setion VI. Finally, setion VII presents the onlusions.II. CSPSA onstraint network onsists of a set of variablesX1; : : : ; Xn with respetive domains D1; : : : ; Dn, and aset of onstraints C. The Cartesian produt of setsD1� � � � �Dn is alled the searh spae and denoted byS. For 2�k�n, a onstraint j1;:::;jk 2 C; j = 1; : : : ;mis a subset of Dj1� � � � �Djk , where the j1; : : : ; jk aredistint. We say that j1;:::;jk is of arity k and that itbounds the variables Xj1 ; : : : ; Xjk and that Cj1;:::;jk isthe set of onstraints that bound variables X1; : : : ; Xk.For onveniene, we use the shorthands j and Cj if thisannot lead to onfusion. For a given onstraint network,the Constraint Satisfation Problem (CSP) asks for allthe n-tuples (d1; : : : ; dn) of values suh that di 2 Di,i = 1; : : : ; n, and for every j1;:::;jk 2 C, (dj1 ; : : : ; djk ) =2j1;:::;jk ; j = 1; : : : ;m. Suh an n-tuple s 2 S is alled asolution of the CSP.For an instane � of CSP with n variables, its on-straint hypergraph G� has n verties v1; : : : ; vn, whihorrespond to the variables of � and it ontains a hyper-edge fvj1 ; : : : ; vjkg if and only if there exists a onstraintof arity k that bounds the variables Xj1 ; : : : ; Xjk . Thefollowing onvenient graph-theoreti representation of aCSP instane � will be used; the inompatibility hyper-graph of �, C�, is an n-partite hypergraph of whih theith part orresponds to variable Xi of � whih has ex-atly jDij verties, one for eah value in Di. In C� thereexists a hyperedge fvj1 ; : : : ; vjkg, if and only if the or-responding values dj1 2 Dj1 , dj2 2 Dj2 ; : : : ; djk 2 Djkare in (not allowed by) some onstraint that bounds theorresponding variables. Hene, the deision version ofCSP is equivalent to asking if there exists a set of ver-ties in C ontaining exatly one vertex from eah partwhile not `ontaining' any hyperedge, i.e., if there existsan independent set with one vertex from eah part1.Note that for the sake of simpliity we study binary1The supersript from both the onstraint and the inompatibil-ity hypergraph will be omitted when it is lear from the ontextwhat instane is referred too



CSPs where all onstraints have arity k = 2 (bound twovariables) and where all the variable domains ontain thesame number of values D. We adhere to this simpli�a-tion beause it restrits experimental omplexity and ev-ery CSP of arity larger than two has an equivalent binaryCSP ([6℄). III. CSP GENERATORSIn [1℄, Ahlioptas et al. show that the so-alled ModelsA to D (de�ned below) are unsuitable for the study ofphase transition and threshold phenomena suh as CSPs.This is beause the instanes they asymptotially gener-ate have almost ertainly no solutions. A general frame-work for these models, presented in [4℄, [5℄ generates in-stanes in two steps:Step 1: Either (i) eah one of the �n2� edges is seletedto be in G independently of all other edges with proba-bility p1 (onstraint density), or (ii) we uniformly seleta random set of edges of size p1�n2�.Step 2: Either (i) for every edge of G eah one of theD2 edges in C is seleted with probability p2 (onstrainttightness), or (ii) for every edge of G we uniformly seleta random set of edges in C of size p2D2Combining the options for the two sets, we get fourslightly di�erent models for generating random CSPs, inpartiular, in the terminology used in [5℄, if both Step 1and 2 are done with option (i), we get Model A, while ifboth steps are done with option (ii), we get Model B.As Ahlioptas et al. show in [1℄ Model A generatesalmost ertainly unsatis�able instanes for every p2 6= 0,while Model B generates almost ertainly unsatis�ableinstanes for every p2 � 1=D (analogously for the othertwo models). In the same paper an alternative model forgenerating random CSP instanes is proposed. The newmodel (Model E) does not su�er from the de�ieniesunderlying the other models. This model resembles themodel used for generating random Boolean formulas forthe satis�ability problem and the onstraints it generatesare similar to the `nogoods' proposed by Williams andHogg ([7℄). This model is de�ned as:De�nition 1: C� is a random n-partite graph with Dverties in eah part onstruted by uniformly, indepen-dently and with repetitions seleting m = p �nk�Dk hy-peredges out of the �nk�Dk possible ones, with k = 2 forbinary onstraint networks. Also, let r = m=n denote theratio of the seleted edges to the number of variables.Suh a model an be fully spei�ed as E(n;m;D; k),where n is the number of variables, m is the numberof onstraints, D is the number of values in eah domainand k is the arity of eah onstraint. Informally one ouldsay that Model E works by hoosing uniformly, indepen-dently and with repetitions onits between two valuesof two di�erent variables.

It was known for Model A to D, that, when one of theirparameters was varied, the generated CSP would ex-hibit a so alled phase transition, where problems hangefrom being relatively easy to solve to being very easyto prove unsolvable. The region where the probabilitythat a problem is soluble hanges from almost zero toalmost one is generally indiated as the mushy region.In the mushy region, problems are in general diÆultto solve or prove unsolvable and therefore of partiu-lar interest when omparing di�erent algorithms for ef-�ieny. Model E also exhibits a phase transition whenone of its variables is hanged and there are boundingformulas for the mushy region. In this paper, all CSPinstanes are generated using Model E with n = 15 vari-ables, domain size D = 15, k = 2, probabilities from theset f0:20; 0:22; 0:24; 0:26; 0:28; 0:30; 0:32; 0:34; 0:36; 0:38g,and the orresponding values of m (see De�nition 1).This puts all generated instanes in the mushy region.IV. PENALTIES AND THEIR ADAPTATIONIn priniple, every penalty funtion is an (heuristi) es-timate of the badness of a given andidate solution. Suhheuristis usually try to estimate the distane to feasiblesolution, or the osts of repairing the unfeasibility. Twobasi types of estimations, thus penalty funtions, areused very often: penalty for violated onstraints and,penalty for wrongly instantiated variables.For a formal desription let us assume that we haveonstraints i (i 2 f1; : : : ;mg), variables vj (j 2f1; : : : ; ng), and let Ci be the set of onstraints involv-ing variable vi. Then the penalties relative to the twooptions above desribed an be expressed as follows:f1(s) = mXi=1 wi � �(s; i); (1)where�(s; i) = � 1 if s violates i0 otherwiserespetively f2(s) = nXi=1 wi � �(s; Ci); (2)where�(s; Ci) = � 1 if s violates at least one  2 Ci0 otherwiseObviously, for the above funtions f1; f2 and for eahs 2 S we have that s is a solution if and only if fi(s) = 0.These de�nitions are independent from any given repre-sentation.The Stepwise Adaptation of Weights (SAW) as a gen-eral mehanism to handle onstraints in an EA, has beenintrodued by Eiben and van der Hauw [3℄. The original



Expr.nr. Fitness Representation Pop.size Crossover1 Variable + SAW Integer 12,3,4 10 1 point, uniform, 4 parent diagonal5,6,7 100 1 point, uniform, 4 parent diagonal8 Variable + SAW Permutation 19,10,11 10 Order1, Cyle, Pmx12,13,14 100 Order1, Cyle, Pmx15 Constraint + SAW Integer 116,17,18 10 1 point, uniform, 4 parent diagonal19,20,21 100 1 point, uniform, 4 parent diagonal22 Constraint + SAW Permutation 123,24,25 10 Order1, Cyle, Pmx26,27,28 100 Order1, Cyle, Pmx29 Variable, no SAW Integer 130,31,32 10 1 point, uniform, 4 parent diagonal33,34,35 100 1 point, uniform, 4 parent diagonal36 Variable, no SAW Permutation 137,38,39 10 Order1, Cyle, Pmx40,41,42 100 Order1, Cyle, Pmx43 Constr, no SAW Integer 144,45,46 10 1 point, uniform, 4 parent diagonal47,48,49 100 1 point, uniform, 4 parent diagonal50 Constr, no SAW Permutation 151,52,53 10 Order1, Cyle, Pmx54,55,56 100 Order1, Cyle, PmxTABLE IExperimental setup for the different runsidea behind the mehanism is that onstraints that arenot satis�ed after a ertain number of steps must be hard,thus must be given a high weight (penalty). This teh-nique was suessful in solving 3-SAT problems, graph3-olouring problems and random binary CSPs, see [2℄for an overview.Tehnially, the SAW mehanism is an add-on to theabove �tness funtion de�nitions amounting to revise theweights during a run, based on the status of the searhproess. This feature is mostly implemented by paus-ing the algorithm at regular intervals, e.g. after Tp �t-ness evaluations, and adding a onstant inrement �w toeah wi that belongs to a violated onstraint (or wronglyinstantiated variable) in the best individual.Setting the inrement �w to 1, the orrespondingweight update mehanisms an be formally desribed asfollows:wi  wi + �(X�; i) for i 2 f1; : : : ;mg (SAWon)respetivelywi  wi + �(X�; Ci) for i 2 f1; : : : ; ng (SAWvar)with X� denoting the best individual in the populationfound so far.The algorithms reported in the literature used a �tnessfuntion of type 1 (see equation 1) for the 3-SAT and therandom binary CSP appliation, and a �tness funtion oftype 2 (see equation 2) for graph olouring. A remarkable

feature of these algorithms is the very small populations,in some appliations population size 1 turned out to beoptimal. V. EXPERIMENTSIn the present study we are investigating several as-pets of onstraint solving EAs. First, we are interestedin the di�erenes between algorithms using a �tness fun-tion of the �rst type (onstraint-based) and the seondtype (variable-based). Seond, we ompare the e�ets ofusing two di�erent representations. The integer repre-sentation is rather straightforward: eah individual haslength n (the number of variables) and the domain ofthe given variable forms the set of possible values forthat position. In the order-based representation, an in-dividual is a permutation of the variables and a simpledeoder is used to assign domain values to eah vari-able in the order they appear in a given permutation.The deoder sequentially takes variables from the per-mutation and tries to instantiate it with values that donot violate any onstraints that bind already instantiatedvariables. If the deoder does not �nd suh a value, thevariable is left uninstantiated2, note therefore that thedeoder only searhes the feasible portion of the searhspae. The third aspet we look at is the populationsize. The �rst SAWing EA appliations suggested that2Tehnially, it is instantiated to a speial value indiating a on-it.



Exp. 17 Exp. 3 Exp. 26 Exp. 12f1, integer f2, integer f1, order-based f2, order-basedSR AES SR AES SR AES SR AES0.20 0.8 1452.7 0.948 1053.59 1 100 1 1000.22 0.62 2119.25 0.868 1635.91 1 100 1 1000.24 0.328 1664.32 0.724 2825.83 1 100.52 1 100.520.26 0.176 1447.68 0.38 5026.57 1 114.136 1 112.3280.28 0.068 3407.18 0.112 6553 1 232.808 1 232.0960.30 0.016 1575 0.072 4328.11 1 966.52 1 1045.420.32 0.004 1492 0.012 4392 1 4036.66 0.988 3804.410.34 0 - 0.004 860 0.696 18836.3 0.688 14942.20.36 0 - 0 - 0.284 22861.6 0.296 19497.50.38 0 - 0 - 0.024 48761.7 0.02 49700.8TABLE IIComparing onstraint and variable based penalties, f1 vs. f2, with SAWingExp. 29 Exp. 36 Exp. 33 Exp. 40int. pop.size 1 order b. pop.size 1 int, pop.size 100 order b. pop.size 100SR AES SR AES SR AES SR AES0.2 1 408 1 8.912 1 2716.24 1 1000.22 1 552.688 1 15.676 1 3519.84 1 1000.24 1 866.604 1 37.012 1 4760.56 1 100.520.26 0.992 1345.85 1 82.024 0.972 8386.91 1 115.6480.28 0.972 3429.6 1 209.412 0.828 12037.8 1 231.3520.3 0.796 6098.46 1 799.608 0.576 17521.4 1 914.0640.32 0.596 9886.1 1 3006.65 0.268 18338.5 0.988 3878.970.34 0.22 9140.64 0.8 12394.2 0.14 19656.6 0.66 123390.36 0.064 16395.3 0.32 13891.4 0.048 18953.3 0.24 14592.80.38 0.024 1819.33 0.024 14450.8 0.008 24270 0.012 50946TABLE IIIComparing integer and order-based representation with f2, no SAW, population size 1 and population size 100a (1+1) sheme is a good heuristi setting. To hekif this suggestion is still valid with the new problem in-stanes, we run all algorithm variants with populationsizes 1, 10 and 100. Fourth, we investigate the e�ets ofthe SAW mehanism itself. Although the SAW meha-nism has been used in di�erent appliations and settings(i.e. �tness funtion and representation type), so far, nosystemati investigation of all ombinations of these set-tings has been published. Here we run all experimentswith and without the weight adaptation mehanism onthe new problem instanes, meanwhile reating a om-prehensive benhmark set for future work. Finally, wetry a number of rossovers for those algorithms with apopulation size greater than 1. For the integer repre-sentation we try 1 point-, uniform-, 4 parent diagonalrossovers, while for the order-based representation weexperiment with Order1, Cyle, and Pmx rossover. Theomplete overview of all experiments is given in table I.There are also a number of shared features amongour algorithm variants. The maximum number of �tnessevaluations is always 100.000 and we use linear rankingseletion with bias: b = 1.5. For the SAWing variants,the weight update period is set to Tp = 250 evaluations

and �w = 1 is used. The mutation operator for inte-ger representation hooses a variable to be mutated anda new value for this variable uniform randomly. For theorder-based algorithms we use a swap mutation operator.As mentioned in setion II, we use a set of 10 di�er-ent probabilities for the Model E CSP generator. Witheah of these probabilities we generate 25 instanes andperform 10 runs over eah instane, resulting in 250 runsfor every p value for eah algorithm variant. Thus, oneexperiment, identi�ed with a number in table I, onsistsof 2500 runs for the given algorithmi setup.We use two measures of omparison for the algorithms.First the Suess Rate (SR), indiating the perentage ofthe runs that were ompleted with a solution. Seond,the Average number of Evaluations to a Solution (AES),together with its standard deviation. This measure isonly de�ned when a solution was found. As a seondarymeasure AES is important as an indiation of the speedof the algorithm. VI. RESULTSSpae limitations do not allow us to present all exper-imental results here. Therefore, we restrit ourselves to



Exp. 22 Exp. 23 Exp. 26pop. size 1 pop. size 10 pop.size 100SR AES SR AES SR AES0.2 1 8.912 1 10.552 1 1000.22 1 15.676 1 13.088 1 1000.24 1 37.656 1 26.784 1 100.520.26 0.968 74.5579 1 63.616 1 114.1360.28 0.792 115.884 1 279.928 1 232.8080.3 0.44 142.582 0.964 3781.09 1 966.520.32 0.24 201.217 0.74 13439.8 1 4036.660.34 0.076 193.053 0.352 15759 0.696 18836.30.36 0.012 223.33 0.108 17877 0.284 22861.60.38 0 - 0.004 4420 0.024 48761.7TABLE IVThe effet of population size for order-based representation using onstraint based penalties.Exp. 54 Exp. 26 Exp. 40 Exp. 12f1, no SAW f1, SAW f2, no SAW f2, SAWSR AES SR AES SR AES SR AES0.2 1 100 1 100 1 100 1 1000.22 1 100 1 100 1 100 1 1000.24 1 100.52 1 100.52 1 100.52 1 100.520.26 1 115.648 1 114.136 1 115.648 1 112.3280.28 1 231.352 1 232.808 1 231.352 1 232.0960.3 1 914.064 1 966.52 1 914.064 1 1045.420.32 0.988 3878.97 1 4036.66 0.988 3878.97 0.988 3804.410.34 0.66 12339 0.696 18836.3 0.66 12339 0.688 14942.20.36 0.24 14592.8 0.284 22861.6 0.24 14592.8 0.296 19497.50.38 0.012 50946 0.024 48761.7 0.012 50946 0.02 49700.8TABLE VThe effet of SAWing for order-based representation using population size 100 and order1 rossover.presenting the outomes that bak-up our most interest-ing �ndings.It seems to have little e�et in hanging betweenonstraint- and variable-based penalty (�tness) fun-tions. Without SAWing there is no di�erene at allwhile with SAWing and order-based representation thedi�erenes are small with a slight advantage of onstraintbased penalties (table II right two olumns). With SAW-ing and integer representation, variable based penaltieswork better (table II left two olumns).As for the representation, it is learly proven that theorder-based representation (together with the deoder)is superior to the straightforward integer representation:higher SR, lower AES and standard deviation (not shownhere), see table III.The optimal population size is learly related to theSAWing feature. For all algorithms using no SAWing,the optimal population size is 1. Nevertheless, for allalgorithms using SAWing, the optimal population size isthe largest one among those tested: 100. In table IV wegive an illustration for order-based representation usingonstraint based penalties.The e�et of SAWing is again related to the represen-tation and, to our surprise, also to the population size.

In ase of integer representation and order-based repre-sentation with small population sizes (1 or 10) it doesnot improve performane. For order-based representa-tion and population size 100 it does so for both penaltyshemes, f. table V.VII. CONCLUSIONSThe systemati and thorough experimentation re-ported in this paper on�rms some "myths", while re-futes others. The superiority of the order-based repre-sentation has been on�rmed by all pairwise ompar-isons of orresponding algorithm variants. Apparently,the ombination of a smaller searh spae (15! vs. 1515)and the deoder { be it very simple { make the order-based EAs so powerful that no feature within the inte-ger based variants an ompensate their advantage. Tothis end, it is remarkable that for the easiest instanes(p 2 f0:2; : : : ; 0:26g) a solution is found in the initialpopulation or the �rst generation (AES is around 100),meaning that (almost) no searh is required { randomlygenerated hromosomes an be deoded to good solu-tions.For illustration see table III. With population size1 (experiment 36) it takes less than 100 generations



Experiment 26, SAWing Experiment 36, no SAWingSR AES Std. Deviation SR AES Std. Deviation0.2 1 100 0 1 8.912 9.467780.22 1 100 0 1 15.676 15.63190.24 1 100.52 4.86294 1 37.012 42.92660.26 1 114.136 43.1245 1 82.024 77.48730.28 1 232.808 290.339 1 209.412 282.4860.3 1 966.52 2344.56 1 799.608 2014.320.32 1 4036.66 7707.84 1 3006.65 5130.010.34 0.696 18836.3 26730.8 0.8 12394.2 18062.90.36 0.284 22861.6 27187.2 0.32 13891.4 18001.80.38 0.024 48761.7 35177.1 0.024 14450.8 8015.43TABLE VIComparing the best SAWing and non SAWing algorithm variants(mutation-seletion yles) to �nd a solution. For pop-ulation size 100 (experiment 40) a solution is found ineither in the initial population (AES=100) or in the �rstpopulation (100 � AES � 200). This suggests that thedeoder delivers the greatest problem solving power, therole of evolutionary searh seems to be seondary.Somewhat surprisingly, we found only small di�erenesbetween using penalties based on onstraints (f1) andvariables (f2). The number of onstraints is muh largerthan the number of variables, therefore f1 should arrymore information, but this does not seem to be ruial.Looking at the e�ets of the population size also yieldssome surprising fats. Contrary to previous suggestionsin the literature ([3℄, [2℄) the optimal population size forthe SAWing EAs is larger than 1. Among the valuestested here 10 was optimal for the integer representa-tion and 100 for order-based representation. However,this observation does not hold for EAs without SAW-ing, where all variants performed best with the (1+1)setup: population size 1, no rossover, only mutation.Reall, that a SAWing EA is working on two tasks si-multaneously: solving the given CSP and �nding appro-priate settings for the weights in the �tness funtion. Itseems that this seond task is performed better whenusing large populations.As for the geneti operators we an onlude that uni-form rossover is preferable for integer representation andorder1 for order-based.Finally, the omparisons of algorithm variants withand without SAWing also led to unexpeted results.SAWing seems to o�er an advantage only for the order-based EAs with a large population, f. table V. Further-more, the best algorithm without SAWing (experimentsetup 36) is better than the best one with SAWing (ex-periment setup 26), see table VI. To this end, let us notethat we did not optimise the parameters Tp and �w ofthe SAWing proedure, just used previously suggestedvalues.The outomes of this investigation should also be on-

sidered from the perspetive of the used problem in-stanes. We generated these instanes by a reently pro-posed problem instane generator that eliminates seriousde�ienies of generators used before. However, for thenew generator, there are no published results in evolu-tionary omputation yet. This study therefore also servesas a benhmark for future omparative researh. Thegenerator and also all problem instanes we used an bedownloaded from www.s.vu.nl/~braenen.Ongoing researh is following the hints given by 3-SAT appliations of SAWing EAs. In partiular, (1 + �)shemes proved to be better than the simple (1+1) setup.Furthermore, the value of � also had a lear e�et on per-formane and in this setting SAWing was ertainly ad-vantageous. It is an interesting question whether suh ob-servations also hold on randomly generated binary CSPs.Referenes[1℄ D. Ahlioptas, L.M. Kirousis, E. Kranakis, D. Krizan, M.S.O.Molloy, and Y.C. Stamatiou. Random onstraint satisfation:A more aurate piture. In G. Smolka, editor, Priniples andPratie of Constraint Programming | CP97, number 1330in Leture Notes in Computer Siene, pages 107{120, Berlin,1997. Springer-Verlag.[2℄ A.E. Eiben and J.I. van Hemert. SAW-ing EAs: Adapting the�tness funtion for solving onstrainted problems. In D. Corne,M. Dorigo, and F. Glover, editors, New Ideas in Optimization,pages 389{402. MGraw-Hill, 1999.[3℄ A.E. Eiben and J.K. van der Hauw. Graph oloring with adap-tive geneti algorithms. Tehnial report, Leiden University,November 1996.[4℄ P. Prosser. An empirial study of phase transitions in binaryonstraint satisfation problems. Journal of Arti�ial Intelli-gene, 81:81{109, 1996.[5℄ B.M. Smith and M.E. Dyer. Loating the phase transition inbinary onstraint satisfation problems. Journal of Arti�ialIntelligene, 81(1-2):155{181, 1996.[6℄ E.P.K. Tsang. Foundations of Constraint Satisfation. Aa-demi Press Limited, 1993.[7℄ C.P. Williams and T. Hogg. Exploiting the deep struture ofonstraint problems. Journal of Arti�ial Intelligene, 70:73{117, 1994.


