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Abstract

In this paper we describe evolutionary algorithms (EAs) for constraint
handling. Constraint handling is not straightforward in an EA because the
search operators mutation and recombination are ‘blind’ to constraints.
Hence, there is no guarantee that if the parents satisfy some constraints
the offspring will satisfy them as well. This suggests that the presence
of constraints in a problem makes EAs intrinsically unsuited to solve this
problem. This should especially hold when the problem does not contain
an objective function to be optimized, but only constraints — the cate-
gory of constraint satisfaction problems. A survey of related literature,
however, indicates that there are quite a few successful attempts to evolu-
tionary constraint satisfaction. Based on this survey we identify a number
of common features in these approaches and arrive to the conclusion that
EAs can be effective constraint solvers when knowledge about the con-
straints is incorporated either into the genetic operators, in the fitness
function, or in repair mechanisms. We conclude by considering a number
of key questions on research methodology.

1 Introduction

Many practical problems can be formalized as constrained (optimization) prob-
lems. These problems are in general tough (NP-hard), hence they need heuristic
algorithms in order to be (approximately) solved in a short time.

EAs show a good ratio of (implementation) effort to performance, and are
acknowledged as good solvers for tough problems. However, no standard EA
takes constraints into account. That is, the regular search operators, mutation
and recombination, in evolutionary programming, evolution strategies, genetic
algorithms, and genetic programming, are ‘blind’ to constraints. Hence, even if
the parents are satisfying some constraints they might very well get offspring vi-
olating them. Technically, this means that EAs perform unconstrained search.
This observation suggests that EAs are intrinsically unsuited to handle con-
strained problems.

In this paper we will have a closer look at this phenomenon. We start with de-
scribing approaches for handling constraints in evolutionary computation. Next
we present an overview of EAs for constraint satisfaction problems, pointing out



the key features that have been added to the standard EA machinery in order
to handle constraints. In Section 4 we summarize the main lessons learned from
the overview and indicate where constraints provide extra information on the
problem and how this information can be utilized by an evolutionary algorithm.
Thereafter, Section 5 handles a number of methodological considerations re-
garding research on solving constraint satisfaction problems (CSPs) by means
of EAs. The final section concludes this paper reiterating that EAs are suited
to treat constrained problems and touches on a couple of promising research
directions.

2 Constraints handling in EAs

There are many ways to handle constraints in an EA. At a high conceptual level
we can distinguish two cases, depending on whether they are handled indirectly
or directly. Indirect constraint handling means that we circumvent the problem
of satisfying constraints by incorporating them in the fitness function f such that
f optimal implies that the constraints are satisfied, and use the optimization
power of the EA to find a solution. By direct constraint handling here we mean
that we leave the constraints as they are and ‘adapt’ the EA to enforce them.
We will return later on the differences between these two cases. Let us note
direct and indirect constraint handling can be applied in combination, i.e., in
one application we can: handle all constraints indirectly; handle all constraints
directly, or; handle some constraints directly and others indirectly. Formally,
indirect constraint handling means transforming constraints into optimization
objectives. The resulting problem transformation imposes the requirement that
the (eliminated) constraints are satisfied if the (new) optimization objectives are
at their optimum. This implies that the given problem is transformed into an
equivalent problem meaning that the two problems share the same solutions’.
For a given constrained problem several equivalent problems can be defined
by choosing the subset of the constraints to be eliminated and/or defining the
objective function measuring their satisfaction differently. So, there are two
important questions to be answered.

e Which constraints should be handled directly (kept as constraints) and
which should be handled indirectly (replaced by optimization objectives)?

e How to define the optimization objectives corresponding to indirectly han-
dled constraints?

Treating constraints directly implies that violating them is not reflected in the
fitness function, thus there is no bias towards chromosomes satisfying them.
Therefore, the population will not become less and less infeasible w.r.t. these
constraints.?

L Actually, it is sufficient to require that the solutions of the transformed problem are also
solutions of the original problem but this nuance is not relevant for this discussion.

2At this point we should make a distinction between feasibility in the original problem
context and (relaxed) feasibility in the context of the transformed problem. E.g. we could



This means that we have to create and maintain feasible chromosomes in
the population. The basic problem in this case is that the regular genetic
operators are blind to constraints, mutating one or crossing over two feasible
chromosomes can result in infeasible offspring. Typical approaches to handle
constraints directly are the following:

e climinating infeasible candidates,

e repairing infeasible candidates,

e preserving feasibility by special operators,

e decoding, i.e., transforming the search space.

Eliminating infeasible candidates is very inefficient, and therefore hardly appli-
cable. Repairing infeasible candidates requires a repair procedure that modifies
a given chromosome such that it will not violate constraints. This technique is
thus problem dependent but if a good repair procedure can be developed then it
works well in practice, see for instance Section 4.5 in [33] for a comparative case
study. The preserving approach amounts to designing and applying problem
specific operators that do preserve the feasibility of parent chromosomes. Using
such operators the search becomes quasi-free, because the offspring remains in
the feasible search space, if the parents were feasible. This is the case in se-
quencing applications, where a feasible chromosome contains each label (allele)
exactly once. The well-known order-based crossovers, [19, 46], are designed to
preserve this property. Note that the preserving approach requires the creation
of a feasible initial population, which can be NP-hard, e.g., for the traveling
salesman problem with time windows. Finally, decoding can simplify the prob-
lem and allow an efficient EA. Formally, decoding can be seen as shifting to a
search space that is different from the Cartesian product of the domains of the
variables in the original problem formulation. Elements of the new search space
S’ serve as inputs for a decoding procedure that creates feasible solutions, and
it is assumed that a free (modulo preserving operators) search can be performed
in S’ by an EA. For a nice illustration we refer again to Section 4.5 in [33].

In case of indirect constraint handling the optimization objectives replacing
the constraints are traditionally viewed as penalties for constraint violation,
hence to be minimized. In general penalties are given for violated constraints
although some (problem specific) EA allocate penalties for wrongly instantiated
variables or, when different from the other options, as the distance to a feasible
solution.

Advantages of indirect constraint handling are:

e generality,
e reduction of the problem to ‘simple’ optimization,

e possibility of embedding user preferences by means of weights.

introduce the name allowability for the conjunction of those constraints that are handled
directly. However, to keep the discussion simple we will use the term feasibility for both cases.



Disadvantages of indirect constraint handling are:
e loss of information by packing everything in a single number,
e does not work well for sparse problems,
e how to merge original objective function with penalties?

There are other classification schemes of constraint handling techniques in EC.
For instance, the categorization in [32], distinguishes pro-choice and pro-life
techniques, where pro-choice encompasses eliminating, decoding, and preserv-
ing, while pro-life covers penalty based and repairing approaches. Overviews and
comparisons published on evolutionary computation techniques for constraint
handling so far mainly concern continuous domains, [29, 30, 31, 34]. Constraint
handling in continuous and discrete domains rely to a certain extent on the
same ideas. There are, however, also differences, for instance in continuous do-
mains constraints can be characterized as linear, non-linear, etc. and in case of
linear constraints special averaging recombination operators can guarantee that
offspring of feasible parents are feasible. In discrete domains this is impossible.

The rest of this paper is concerned with a comparative analysis of a number
of methods based on EAs for solving CSPs that have been so far introduced. Our
comparison is mainly based on the way constraints are handled, either directly
or indirectly. Therefore our discussion will not take into account the particular
parameters setting of a GA, like the role of mutation and crossover rates, or the
role of the selection mechanism and the size of the population. This survey does
not pretend to be a comprehensive account of all the works on solving CSP using
EAs. It is rather meant to emphasize the main ideas on constraint handling (over
finite domains) which have been employed in evolutionary algorithms.

3 Evolutionary CSP solvers

Usually a CSP is stated as a problem of finding an instantiation of variables
v1,- .., Up within the finite domains Dy, ..., D, such that constraints (relations)
1, - -,Cm prescribed for (some of) the variables hold. The formula ¢ is then
the conjunction of the given constraints. One may be interested in one, some
or all solutions, or only in the existence of a solution.

In the last years there have been reports on quite a few EAs for solving CSPs
(for finding one solution) having a satisfactory performance. The majority of
these EAs perform indirect constraint handling by means of a penalty based
fitness function, and possibly incorporate knowledge about the CSP into the
genetic operators, the fitness function, or as apart module in the form of local
search. First, we describe four approaches for solving CSPs using GAs that
exploit information on the constraint network. Next, we discuss other three
methods for solving CSPs which make use of an adaptive fitness function in
order to enhance the search for a good (approximate) solution.



3.1 Heuristic Genetic Operators

In [14, 15], Eiben et al. propose to incorporate existing CSP heuristics into
genetic operators. Two heuristic based genetic operators are specified: an asex-
ual operator that transforms one individual into a new one and a multi-parent
operator that generates one offspring using two or more parents. The asexual
heuristic based genetic operator selects a number of variables in a given individ-
ual, and then chooses new values for these variables. Both steps are guided by
a heuristic: for instance, the selected variables are those involved in the largest
number of violated constraints, and the new values for those variables are the
values which maximize the number of constraints that become satisfied. The
basic mechanism of the multi-parent heuristic crossover operator is scanning;:
for each position, the values of the variables of the parents in that position are
used to determine the value of the variable in that position in the child. The se-
lection of the value is done using the heuristic employed in the asexual operator.
The difference with the asexual heuristic operator is that the heuristic does not
evaluate all possible values but only those of the variables in the parents. The
multi-parent crossover is applied to more parents (typical value 5) and produces
one child.

Version 1 | Version 2 Version 3
Main Asexual Multi-parent | Multi-parent
operator heuristic | heuristic heuristic
operator | crossover crossover
Secondary | Random | Random Asexual
operator mutation | mutation heuristic
operator
Fitness Number of violated constraints
function
Extra None

Table 1: Specific features of three implemented versions of H-GA

The main features of three EAs based on this approach, called H-GA.1,
H-GA.2, and H-GA.3, are illustrated in Table 1. In the H-GA.1 version the
heuristic based genetic operator serves as the main search operator assisted by
(random) mutation. In H-GA.3 it accompanies the multi-parent crossover in a
role which is normally filled in by mutation.

3.2 Knowledge Based Fitness and Genetic Operators

In [44, 43] M. C. Riff Rojas introduces an EA for solving CSPs which uses infor-
mation about the constraint network in the fitness function and in the genetic
operators (crossover and mutation). The fitness function is based on the no-
tion of error evaluation of a constraint. The error evaluation of a constraint is
the sum of the number of variables of the constraint and the number of vari-
ables that are connected to these variables in the CSP network. The fitness



function of an individual, called arc-fitness, is the sum of error evaluations of
all the violated constraints in the individual. The mutation operator, called
arc-mutation, selects randomly a variable of an individual and assigns to that
variable the value that minimizes the sum of the error-evaluations of the con-
straints involving that variable. The crossover operator, called arc-crossover,
selects randomly two parents and builds an offspring by means of the following
iterative procedure over all the constraints of the considered CSP. Constraints
are ordered according to their error-evaluation with respect to instantiations of
the variables that violate the constraints. For the two variables of a selected
(binary) constraint ¢, say v;,v;, the following cases are distinguished.

1. If none of the two variables are instantiated in the offspring under con-
struction then:

e If none of the parents satisfies ¢, then a pair of values for v;,v; from
the parents is selected which minimizes the sum of the error evalua-
tions of the constraints containing v; or v; whose other variables are
already instantiated in the offspring.

e If there is one parent which satisfies ¢, then that parent supplies the
values for the child.

e If both parents satisfy ¢, then the parent which has the higher fitness
provides its values for v;, v;.

2. If only one variable, say v;, is not instantiated in the offspring under
construction, then the value for v; is selected from the parent minimizing
the sum of the error-evaluations of the constraints involving v;.

3. If both variables are instantiated in the offspring under construction, then
the next constraint (in the ordering described above) is selected.

The main features of a GA based on this approach are summarized in Table 2.

Crossover operator | Arc-crossover operator
Mutation operator | Arc-mutation operator
Fitness function Arc-fitness

Extra None

Table 2: Specific features of Arc-GA

3.3 Glass Box Approach

In [27] E. Marchiori introduces an EA for solving CSPs which transforms con-
straints into a canonical form in such a way that there is only one single (type
of) primitive constraint. This approach, called glass box approach, is used in
constraint programming [48], where CSPs are given in implicit form by means of



formulas of a given specification language. For instance, for the N-Queens Prob-
lem, we have the well known formulation in terms of the following constraints,
where abs denotes absolute value:

e v; # v, for all i # j (two queens cannot be on the same row).

e abs(v; — v;) # abs(i — j) for all i # j (two queens cannot be on the same
diagonal).

By decomposing complex constraints into primitive ones, the resulting con-
straints have the same granularity and therefore the same intrinsic difficulty.
This rewriting of constraints, called constraint processing, is done in two steps:
elimination of functional constraints (as in GENOCOP [33]) and decomposition of
the CSP into primitive constraints. The choice of primitive constraints depends
on the specification language. The primitive constraints chosen in the exam-
ples considered in [27], the N-Queens Problem and the Five Houses Puzzle, are
linear inequalities of the form: a -wv; — f-v; # 7. When all constraints are
reduced to the same form, a single probabilistic repair rule is applied, called
dependency propagation. The repair rule used in the examples is of the form
if a-p;—fB-p; = v then change p; or p;. The violated constraints are processed
in random order. Repairing a violated constraint can result in the production
of new violated constraints, which will not be repaired. Thus at the end of the
repairing process the chromosome will not in general be a solution. Note that
this kind of EA is designed under the implicit assumption that CSPs are given
in implicit form by means of formulas in some specification language.

A simple heuristic can be used in the repair rule by selecting the variable
whose value has to be changed as the one which occurs in the largest number of
constraints, and by setting its value to a different value in the variable domain.
The main features of this EA are summarized in Table 3.

Crossover operator | One-point crossover

Mutation operator | Random mutation

Fitness function Number of violated constraints
Extra Repair rule

Table 3: Main features of Glass-Box GA

3.4 Genetic local search

In [28] Marchiori and Steenbeek introduced a genetic local search (GLS) al-
gorithm for random binary CSPs, called RIGA (Repair Improve GA). In this
approach, heuristic information is not incorporated into the GA operators or
fitness function, but is included into the GA as a separate module in the form
of a local search procedure. The idea is to combine a simple GA with a local
search procedure, where the GA is used to explore the search space, while the
local search procedure is mainly responsible for the exploitation. In RIGA, the



local search applied to a chromosome produces a consistent partial instantiation,
that is, only some of the variables of the CSP have a value, and each constraint
of the CSP whose variables are all instantiated dissatisfied. Moreover, this in-
stantiation cannot be extended by binding some non-instantiated variable to
a value without violating the consistency. A chromosome is a sequence of ac-
tual domains (a subset of the domain), one for each variable of the CSP. RIGA
consists of two main phases:

e Repair: a chromosome is transformed into a consistent partial instantia-
tion by removing values from the actual domains of the variables.

e Improve: the consistent partial instantiation is optimized and maximized.

The main features of the GLS algorithm are summarized in Table 4.

Crossover operator | Uniform

Mutation operator | Random mutation

Fitness function Number of instantiated variables
Extra Local search

Table 4: Main features of the GLS algorithm

3.5 Co-evolutionary Approach

This approach has been tested by Paredis on different problems, such as neu-
ral net learning [39], constraint satisfaction [38, 39] and searching for cellular
automata that solve the density classification task [40].

In the co-evolutionary approach for CSPs two populations evolve according
to a predator-prey model: a population of (candidate) solutions and a popu-
lation of constraints. The selection pressure on individuals of one population
depends on the fitness of the members of the other population. The fitness of
an individual in either of these populations is based on a history of encoun-
ters. An encounter means that a constraint from the constraint population is
matched with a chromosome from the solutions population. If the constraint is
not violated by the chromosome, the individual from the solutions population
gets a point. Otherwise, the constraint gets a point. The fitness of an individ-
ual is the number of points it has obtained in the last 25 encounters. In this
way, individuals in the constraint population which have been often violated
by members of the solutions population have higher fitness. This forces the
solutions to concentrate on more difficult constraints. At every generation of
the EA, 20 encounters are executed by repeatedly selecting pairs of individuals
from the populations, biasing the selection towards fitter individuals. Clearly,
mutation and crossover are only applied to the solutions population. Parents
for crossover are selected using linear ranked selection [49]. The main features
of this EA are summarized in Table 5.

Another noteworthy example of using a coevolutionary approach to solving
satisfaction problems was done by Hisashi Handa et al. in [22, 23]r. Here



Crossover operator | Two-point crossover
Random mutation
Fitness function Number of points in last 25 encounters
Extra Co-evolution

Table 5: Main features of the co-evolutionary algorithm

the host population of solutions competes with a parasite population of useful
schemata. These and successive papers explore the use of different operators as
well as demonstrate the effectiveness of this kind of coevolutionary approach.

3.6 Heuristic-Based Microgenetic Method

In the approach proposed by Dorzier et al in [7], and further refined in [4, §],
information about the constraints is incorporated both in the genetic operators
and in the fitness function. In the Microgenetic Iterative Descent Algorithm the
fitness function is adaptive and employs Morris’ Breakout Creating Mechanism
to escape from local optima. At each generation an offspring is created by
mutating a specific gene of the selected chromosome, called pivot gene, and
that offspring replaces the worst individual of the actual population. The new
value for that gene as well as the pivot gene are heuristically selected. Roughly,
the fitness function of a chromosome is determined by adding a suitable penalty
term to the number of constraint violations the chromosome is involved in. The
penalty term is the sum of the weights of all the breakouts® whose values occur
in the chromosome. The set of breakouts is initially empty and it is modified
during the execution by increasing the weights of breakouts and by adding new
breakouts according to the technique used in the Iterative Descent Method [37].

Crossover operator | None

Mutation operator | Singlepoint heuristic mutation
Fitness function Heuristic based

Extra None

Table 6: Main features of heuristic-based microgenetic algorithm

In [4, 8], this algorithm is improved by introducing a number of novel fea-
tures, like a mechanism for reducing the number of redundant evaluations, a
novel crossover operator, and a technique for detecting inconsistency.

3.7 Stepwise Adaptation of Weights

The Stepwise Adaptation of Weights (SAW) mechanism has been introduced by
Eiben and van der Hauw [11] as an improved version of the weight adaptation

3 A breakout consists of two parts: 1) a pair of values that violates a constraint; 2) a weight
associated to that pair



mechanism of Eiben, Raué and Ruttkay [16, 17]. In several comparisons the
SAW-ing EA proved to be a superior technique for solving specific CSPs [2, 12].
The basic idea behind the SAW-ing mechanism is that constraints that are not
satisfied after a certain number of steps must be hard, thus must be given a
high weight (penalty). The realization of this idea constitutes of initializing the
weights at 1 and re-setting them by adding a value dw after a certain period.
Re-setting is only applied to those constraints that are violated by the best
individual of the given population. Earlier studies indicated the good perfor-
mance of a simple (1+1) scheme, using a singleton population and exclusively
mutation to create offspring. The representation is based on a permutation of
the problem variables; a permutation is transformed to a partial instantiation
by a simple decoder that considers the variables in the order they occur in the
chromosome and assigns the first possible domain value to that variable. If no
value is possible without introducing a constraint violation, the variable is left
uninstantiated. Uninstantiated variables are, then, penalized and the fitness of
the chromosome (a permutation) is the total of these penalties. Let us note
that penalizing uninstantiated variables is a much rougher estimation of solu-
tion quality than penalizing violated constraints. This option worked well for
graph coloring.

Crossover operator | Uniform

Mutation operator | Random mutation

Fitness function Based on the hardness of constraints

Extra A decoder to obtain a consistent partial instantiation

Table 7: Main features of the SAW-ing algorithm

4 Discussion

The amount and quality of work in the area of evolutionary CSP solving cer-
tainly refutes the initial intuitive hypothesis that EAs are intrinsically unsuited
for constrained problems. This raises the question what makes EAs able to solve
CSPs? Looking at the specific features of EAs for CSPs one can distinguish two
categories. In the first category we find heuristics that can be incorporated in
almost any EA component, the fitness function, the variation operators muta-
tion and recombination, the selection mechanism, or used in a repair procedure.
The second category is formed by adaptive features, in particular a fitness func-
tion that is being modified during a run. All reported algorithms fall into one
of these categories and that of Dozier et al. belongs to both.

A careful look at the above features discloses that they are all based on in-
formation related to the constraints themselves. The very fact that the (global)
problem to be solved is defined in terms of (local) constraints to be satisfied facil-
itates the design and usage of ‘tricks’. The scope of applicability of these tricks



is limited to constrained problems?, but not necessarily to a particular CSP, like
SAT or graph coloring. The first category of tricks is based on the fact that the
presence of constraints facilitates measures on sub-individual structures. For
instance, one gene (variable) can be evaluated by the number of conflicts its
present, value is involved in. Such sub-individual measures are not possible for
example in a pure function optimization problem, where only a whole individ-
ual can be evaluated. These measures are typically used as evaluation heuristics
giving hints on how to proceed in constructing an offspring, or in repairing a
given individual. The second category is based on the fact that the composite
nature of the problem leads to a composite evaluation function. Such a com-
posite function can be tuned during a run by adding new nogoods (Dozier),
modifying weights (SAW-ing), or changing the reference set of constraints used
to calculate it (coevolution).

Browsing through the literature there are other aspects that (some of) the
papers share. Apparently indirect constraint handling is more common practice
than direct constraint handling. On the other hand, in almost all applications
some heuristics are used even if the transformed problem is a free optimization
problem, and these heuristics are meant to increase the chance of satisfying
constraints. In other words, constraints are handled directly by these heuristics.

Another noteworthy property that occurs repeatedly in EAs for CSPs is the
small size of the population. Common EA wisdom suggests that big populations
are better than small ones for they can keep genetic diversity easier, respectively
longer. From personal communications with authors and own experience it turns
out that using small populations is always justified by experiments. Exactly
because small populations contradict ones intuition, such setups are only taken
after substantial experimental justification. Such an experimental comparison
sometimes leads to surprising outcomes, for instance that the optimal setup is
to use a population of size 1 and only mutation as search operator [2, 10]. In this
case it is legitimate to ask whether the resulting algorithm is still evolutionary
or is it only just a hill-climber. Clearly, this is a judgment call, but as most
people in evolutionary computation accept the (1+1) and the (1,1) evolution
strategy as members of the family, it is legitimate to say that one still has an
EA in this case.

Summarizing, it seems possible to extract some guidelines from existing lit-
erature on how to tackle a CSP by evolutionary algorithms. A short list of
promising options is:

1. Use, possibly existing, heuristics to estimate the quality of sub-individual
entities (like one variable assignment) in the components of the EA: fitness
function, mutation and recombination operators, selection, repair mecha-
nism.

2. Exploit the composite nature of the fitness function and change its com-
position over time. During the search information is collected (e.g. on

4 Actually, this is not entirely true. For instance, the SAW-ing technique can be easily
imported into GP for machine learning applications, cf. [9]



which constraints are hard); this information can be very well utilized.

3. Try small populations and mutation only schemes.

5 Assessment of EAs for CSPs

The foregoing sections have indicated that evolutionary algorithms can solve
constrained problems, in particular CSPs. But are these evolutionary CSP
solvers competitive with traditional techniques? Some papers draw a compar-
ison between an EA and another technique, for instance on 3-SAT and graph
3-coloring. In general, however, this question is still open.

Performing an experimental comparison between algorithms, in particular,
between evolutionary and other type of problem solvers implies a number of
methodological questions:

1. Which benchmark problems and problem instances should be used?
2. Which competitor algorithms should be used?
3. Which comparative measures should be used?

As for the problems and problem instances one could distinguish two main
approaches: the repository and the generator approach. The first one amounts
to obtaining prepared problem instances that are freely available from (Web-
based) repositories, for instance the Constraints Archive at http://wuw.cs.
unh.edu/ccc/archive. The advantage of this approach is that the problem in-
stances are ‘interesting’ in the sense that other researchers have investigated and
evaluated them already. Besides, an archive often contains performance reports
of other techniques, thereby providing a direct feedback on one’s own achieve-
ments. Using a problem instance generator (which of course could be coming
from an archive) means that problem instances are produced on-the-spot. Such
a generator usually has some problem specific parameters, for instance the num-
ber of clauses and the number of variables for 3-SAT, or the constraint density
and constraint tightness for binary CSPs. The advantage of this approach is
that the hardness of the problem instances can be tuned by the parameters of
the generator. Recent research has shed light on the location of really hard
problem instances, the so-called phase transition, for different classes of prob-
lems [5, 20, 21, 24, 35, 41, 42, 45]. A generator makes it possible to perform
a systematic investigation in and around the hardest parameter range. The
currently available EA literature mostly follows the repository approach tack-
ling commonly studied problems, like N-queens®, 3-SAT, graph coloring, or the
Zebra puzzle. Dozier et al. use a random problem instance generator for binary

5This problem has a rather exceptional feature: if its size (the number of queens) is in-
creased, it gets easier [36]. This makes it somewhat uninteresting as the traditional ‘scale-up
competition’ won’t work with it.



CSPs® which creates instances for different constraint tightness and density val-
ues [7]. Later on this generator has been adopted and reimplemented by Eiben
et al. [13].

Advises on the choice for a competitor algorithm boil down to the same
suggestion: choose the best one available to represent a real challenge. Im-
plementing this principle is, of course, not always simple. It could be hard to
find out which specific algorithm shows the best performance on a given (type
of) problem. This is not only due to the difficulties of finding information.
Sometimes it is not clear which criteria to use for basing the choice upon.

This problem leads us to the third aspect of comparative experimental re-
search: that of the comparative measures. The performance of a problem solving
algorithm can be measured in different ways. Speed and solution quality are
widely used, and for stochastic algorithms, as EAs are, the probability of finding
a solution (of certain quality) is also a common measure.

Speed is often measured in elapsed computer time, CPU time or user time.
However, this measure is depending on the specific hardware, operating system,
compiler, network load, etc. and therefore is ill-suited for reproducible research.
In other words, repeating the same experiments, possibly elsewhere, may lead
to different results. For generate-and-test style algorithms, as EAs are, a com-
mon way around this problem is to count the number of points visited in the
search space. Since EAs immediately evaluate each newly generated candidate
solution, this measure is usually expressed as the number of fitness evaluations.
Forced by the stochastic nature of EAs this is always measured over a number of
independent runs and the Average number of Evaluations to a Solution (AES)
is used. It is important to note that the average is only taken over the successful
runs (“to a Solution”), otherwise the actually used maximum number of eval-
uations would distort the statistics. Fair as this measure seems, there are two
possible problems with it. First, it could be misleading if an EA uses ‘hidden
labor’, for instance some heuristics incorporated in the genetic operators, in the
fitness function, or in a local search module (like in GLS). The extra computa-
tional effort due to hidden labor can increase performance, but are invisible to
the AES measure’. Second, it can be difficult to apply AES for comparing an
EA with search algorithms that do not work in the same search space. An EA
is iteratively improving complete candidate solutions, so one elementary search
step is the creation of one new candidate solution. However, a constructive
search algorithm would work in the space of partial solutions (including the
complete ones that an EA is searching through) and one elementary search step
is extending the current solution. Counting the number of elementary search
steps is misleading if the search steps are different. A common treatment for
both of these problems with AES (hidden labor, different search steps) is to

6Binary CSPs (where each constraint concerns exactly two variables) form a nice problem
class. While they have a transparent structure it holds that every CSP is equivalent to a
binary CSP [47].

"In the CSP literature the number of constraint checks is used commonly as speed measure.
It seems an interesting option to use this into measure in combination with or as an alternative
to the AES measure in evolutionary computing



compare scale-up behavior of the algorithms. To this end a problem is needed
that is scalable, that is, its size can be changed. The number of variables is a
natural scale-up parameter for many problems. Two different types of methods
can then be compared by plotting their own speed measure figures against the
problem size. Even though the measures used in each curve are different, the
steepness information is a fair basis for comparison: the curve that grows at a
higher rate indicates an inferior algorithm.

Solution quality of approximate algorithms for optimization is most com-
monly defined as the distance to an optimum at termination, e.g. |frest — foptls
where f is the function to be optimized, fpest is the f value of best candidate
solution found in the given run and f,,: is the optimal f value. For stochastic
algorithms this is averaged over a number of independent runs and in evolu-
tionary computing the Mean Best Fitness (MBF') is a commonly used name for
this measure. As we have seen in this paper, for constraint satisfaction problems
it is not straightforward what f to use — there are more sensible options. For
comparing the solution quality of algorithms this means that there are more
sensible quality measures. The problem is then, that most probably one would
use the function f that has been used to find a solution and this can be different
for another algorithm. For instance, algorithm A could use the number of un-
satisfied constraints as fitness function and algorithm B could use the number
of wrong variable instantiations. It is then not clear what measure to use for
comparing the two algorithms. Moreover, in constraint satisfaction it is often
not good enough to be close to a solution. A candidate is either good (satisfies
all constraints) or bad (violates some constraints). In this case, it makes no
sense to look at the distance to a solution as a quality measure, hence the MBF
measure is not appropriate.

The third measure which is often used to judge stochastic algorithms, and
thus EAs, is the probability of finding a solution (of certain quality). This
probability can be estimated by performing a number of independent runs under
the same setup on the same type of problems and keep a record on the percentage
of runs that did find a solution. This Success Rate (SR) completes the picture
obtained by AES and MBF. Note that SR and MBF are related but do provide
different information, and all different combinations of good/bad SR/MBF are
possible. For instance, bad (low) SR and good (high) MBF indicate a good
approximator algorithm: it gets close, but misses the last step to hit the solution.
Likewise, a good (high) SR and a bad (low) MBF combination is also possible.
Such a combination shows that the algorithm mostly performs perfectly, but
sometimes it does a very very bad job.

6 Conclusion

This survey of related work disclosed how EAs can be made successful in solving
CSPs. Roughly classifying the options we encountered, the key features are the
utilization of heuristics and/or the adaptation of the fitness function during a
run. Both features are based on the structure of the problems in question, so



in a way the problem of how to treat CSPs carries its own solution.

In particular, constraints facilitate the use of sub-individual measures to
evaluate parts of candidate solutions. Such sub-individual measures are not
possible for example in a pure function optimization problem, where only a
whole individual can be evaluated. These measures lead to heuristics that can
be incorporated in practically any component of an EA, the fitness function,
mutation and recombination operators, selection, or used in a repair (or more
in general local search) mechanism.

Likewise, it is the presence of constraints that leads to a fitness function
composed from separate pieces. This composition or the relative importance of
the components can be changed over time. During the search information is
collected (e.g. on which constraints are hard) and this information can be very
well utilized.

The field of evolutionary constraint satisfaction is relatively new. Inten-
sive investigations started approximately in the mid nineties, while evolution-
ary computing itself has it roots in the sixties. Because of the short history
coherence is lacking and the findings of individual experimental studies cannot
be generalized (yet). There are a number of research directions that should be
pursued in the future for further development. These include:

e Study of the problem area. A lot can be learned from the traditional
constrained literature about such problems. Existing knowledge should
be imported into core EC research.

e Cross-fertilization between the insights concerning EAs for (continuous)
COPs and (discrete) CSPs. At present, these two sub-areas are practically
unrelated.

e Sound methodology: how to set up fair experimental research, how to
obtain good benchmarks, how to compare EAs with other techniques.

e Theory: better analysis of the specific features of constrained problems,
and the influence of these features on EA behavior.
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