
How to Handle Constraints with EvolutionaryAlgorithmsB.G.W. Craenen A.E. Eiben E. MarhioriAbstratIn this paper we desribe evolutionary algorithms (EAs) for onstrainthandling. Constraint handling is not straightforward in an EA beause thesearh operators mutation and reombination are `blind' to onstraints.Hene, there is no guarantee that if the parents satisfy some onstraintsthe o�spring will satisfy them as well. This suggests that the preseneof onstraints in a problem makes EAs intrinsially unsuited to solve thisproblem. This should espeially hold when the problem does not ontainan objetive funtion to be optimized, but only onstraints { the ate-gory of onstraint satisfation problems. A survey of related literature,however, indiates that there are quite a few suessful attempts to evolu-tionary onstraint satisfation. Based on this survey we identify a numberof ommon features in these approahes and arrive to the onlusion thatEAs an be e�etive onstraint solvers when knowledge about the on-straints is inorporated either into the geneti operators, in the �tnessfuntion, or in repair mehanisms. We onlude by onsidering a numberof key questions on researh methodology.1 IntrodutionMany pratial problems an be formalized as onstrained (optimization) prob-lems. These problems are in general tough (NP-hard), hene they need heuristialgorithms in order to be (approximately) solved in a short time.EAs show a good ratio of (implementation) e�ort to performane, and areaknowledged as good solvers for tough problems. However, no standard EAtakes onstraints into aount. That is, the regular searh operators, mutationand reombination, in evolutionary programming, evolution strategies, genetialgorithms, and geneti programming, are `blind' to onstraints. Hene, even ifthe parents are satisfying some onstraints they might very well get o�spring vi-olating them. Tehnially, this means that EAs perform unonstrained searh.This observation suggests that EAs are intrinsially unsuited to handle on-strained problems.In this paper we will have a loser look at this phenomenon. We start with de-sribing approahes for handling onstraints in evolutionary omputation. Nextwe present an overview of EAs for onstraint satisfation problems, pointing out1



the key features that have been added to the standard EA mahinery in orderto handle onstraints. In Setion 4 we summarize the main lessons learned fromthe overview and indiate where onstraints provide extra information on theproblem and how this information an be utilized by an evolutionary algorithm.Thereafter, Setion 5 handles a number of methodologial onsiderations re-garding researh on solving onstraint satisfation problems (CSPs) by meansof EAs. The �nal setion onludes this paper reiterating that EAs are suitedto treat onstrained problems and touhes on a ouple of promising researhdiretions.2 Constraints handling in EAsThere are many ways to handle onstraints in an EA. At a high oneptual levelwe an distinguish two ases, depending on whether they are handled indiretlyor diretly. Indiret onstraint handling means that we irumvent the problemof satisfying onstraints by inorporating them in the �tness funtion f suh thatf optimal implies that the onstraints are satis�ed, and use the optimizationpower of the EA to �nd a solution. By diret onstraint handling here we meanthat we leave the onstraints as they are and `adapt' the EA to enfore them.We will return later on the di�erenes between these two ases. Let us notediret and indiret onstraint handling an be applied in ombination, i.e., inone appliation we an: handle all onstraints indiretly; handle all onstraintsdiretly, or; handle some onstraints diretly and others indiretly. Formally,indiret onstraint handling means transforming onstraints into optimizationobjetives. The resulting problem transformation imposes the requirement thatthe (eliminated) onstraints are satis�ed if the (new) optimization objetives areat their optimum. This implies that the given problem is transformed into anequivalent problem meaning that the two problems share the same solutions1.For a given onstrained problem several equivalent problems an be de�nedby hoosing the subset of the onstraints to be eliminated and/or de�ning theobjetive funtion measuring their satisfation di�erently. So, there are twoimportant questions to be answered.� Whih onstraints should be handled diretly (kept as onstraints) andwhih should be handled indiretly (replaed by optimization objetives)?� How to de�ne the optimization objetives orresponding to indiretly han-dled onstraints?Treating onstraints diretly implies that violating them is not reeted in the�tness funtion, thus there is no bias towards hromosomes satisfying them.Therefore, the population will not beome less and less infeasible w.r.t. theseonstraints.21Atually, it is suÆient to require that the solutions of the transformed problem are alsosolutions of the original problem but this nuane is not relevant for this disussion.2At this point we should make a distintion between feasibility in the original problemontext and (relaxed) feasibility in the ontext of the transformed problem. E.g. we ould



This means that we have to reate and maintain feasible hromosomes inthe population. The basi problem in this ase is that the regular genetioperators are blind to onstraints, mutating one or rossing over two feasiblehromosomes an result in infeasible o�spring. Typial approahes to handleonstraints diretly are the following:� eliminating infeasible andidates,� repairing infeasible andidates,� preserving feasibility by speial operators,� deoding, i.e., transforming the searh spae.Eliminating infeasible andidates is very ineÆient, and therefore hardly appli-able. Repairing infeasible andidates requires a repair proedure that modi�esa given hromosome suh that it will not violate onstraints. This tehnique isthus problem dependent but if a good repair proedure an be developed then itworks well in pratie, see for instane Setion 4.5 in [33℄ for a omparative asestudy. The preserving approah amounts to designing and applying problemspei� operators that do preserve the feasibility of parent hromosomes. Usingsuh operators the searh beomes quasi-free, beause the o�spring remains inthe feasible searh spae, if the parents were feasible. This is the ase in se-quening appliations, where a feasible hromosome ontains eah label (allele)exatly one. The well-known order-based rossovers, [19, 46℄, are designed topreserve this property. Note that the preserving approah requires the reationof a feasible initial population, whih an be NP-hard, e.g., for the travelingsalesman problem with time windows. Finally, deoding an simplify the prob-lem and allow an eÆient EA. Formally, deoding an be seen as shifting to asearh spae that is di�erent from the Cartesian produt of the domains of thevariables in the original problem formulation. Elements of the new searh spaeS0 serve as inputs for a deoding proedure that reates feasible solutions, andit is assumed that a free (modulo preserving operators) searh an be performedin S0 by an EA. For a nie illustration we refer again to Setion 4.5 in [33℄.In ase of indiret onstraint handling the optimization objetives replaingthe onstraints are traditionally viewed as penalties for onstraint violation,hene to be minimized. In general penalties are given for violated onstraintsalthough some (problem spei�) EA alloate penalties for wrongly instantiatedvariables or, when di�erent from the other options, as the distane to a feasiblesolution.Advantages of indiret onstraint handling are:� generality,� redution of the problem to `simple' optimization,� possibility of embedding user preferenes by means of weights.introdue the name allowability for the onjuntion of those onstraints that are handleddiretly. However, to keep the disussion simple we will use the term feasibility for both ases.



Disadvantages of indiret onstraint handling are:� loss of information by paking everything in a single number,� does not work well for sparse problems,� how to merge original objetive funtion with penalties?There are other lassi�ation shemes of onstraint handling tehniques in EC.For instane, the ategorization in [32℄, distinguishes pro-hoie and pro-lifetehniques, where pro-hoie enompasses eliminating, deoding, and preserv-ing, while pro-life overs penalty based and repairing approahes. Overviews andomparisons published on evolutionary omputation tehniques for onstrainthandling so far mainly onern ontinuous domains, [29, 30, 31, 34℄. Constrainthandling in ontinuous and disrete domains rely to a ertain extent on thesame ideas. There are, however, also di�erenes, for instane in ontinuous do-mains onstraints an be haraterized as linear, non-linear, et. and in ase oflinear onstraints speial averaging reombination operators an guarantee thato�spring of feasible parents are feasible. In disrete domains this is impossible.The rest of this paper is onerned with a omparative analysis of a numberof methods based on EAs for solving CSPs that have been so far introdued. Ouromparison is mainly based on the way onstraints are handled, either diretlyor indiretly. Therefore our disussion will not take into aount the partiularparameters setting of a GA, like the role of mutation and rossover rates, or therole of the seletion mehanism and the size of the population. This survey doesnot pretend to be a omprehensive aount of all the works on solving CSP usingEAs. It is rather meant to emphasize the main ideas on onstraint handling (over�nite domains) whih have been employed in evolutionary algorithms.3 Evolutionary CSP solversUsually a CSP is stated as a problem of �nding an instantiation of variablesv1; : : : ; vn within the �nite domains D1; : : : ; Dn suh that onstraints (relations)1; : : : ; m presribed for (some of) the variables hold. The formula � is thenthe onjuntion of the given onstraints. One may be interested in one, someor all solutions, or only in the existene of a solution.In the last years there have been reports on quite a few EAs for solving CSPs(for �nding one solution) having a satisfatory performane. The majority ofthese EAs perform indiret onstraint handling by means of a penalty based�tness funtion, and possibly inorporate knowledge about the CSP into thegeneti operators, the �tness funtion, or as apart module in the form of loalsearh. First, we desribe four approahes for solving CSPs using GAs thatexploit information on the onstraint network. Next, we disuss other threemethods for solving CSPs whih make use of an adaptive �tness funtion inorder to enhane the searh for a good (approximate) solution.



3.1 Heuristi Geneti OperatorsIn [14, 15℄, Eiben et al. propose to inorporate existing CSP heuristis intogeneti operators. Two heuristi based geneti operators are spei�ed: an asex-ual operator that transforms one individual into a new one and a multi-parentoperator that generates one o�spring using two or more parents. The asexualheuristi based geneti operator selets a number of variables in a given individ-ual, and then hooses new values for these variables. Both steps are guided bya heuristi: for instane, the seleted variables are those involved in the largestnumber of violated onstraints, and the new values for those variables are thevalues whih maximize the number of onstraints that beome satis�ed. Thebasi mehanism of the multi-parent heuristi rossover operator is sanning:for eah position, the values of the variables of the parents in that position areused to determine the value of the variable in that position in the hild. The se-letion of the value is done using the heuristi employed in the asexual operator.The di�erene with the asexual heuristi operator is that the heuristi does notevaluate all possible values but only those of the variables in the parents. Themulti-parent rossover is applied to more parents (typial value 5) and produesone hild. Version 1 Version 2 Version 3Main Asexual Multi-parent Multi-parentoperator heuristi heuristi heuristioperator rossover rossoverSeondary Random Random Asexualoperator mutation mutation heuristioperatorFitness Number of violated onstraintsfuntionExtra NoneTable 1: Spei� features of three implemented versions of H-GAThe main features of three EAs based on this approah, alled H-GA.1,H-GA.2, and H-GA.3, are illustrated in Table 1. In the H-GA.1 version theheuristi based geneti operator serves as the main searh operator assisted by(random) mutation. In H-GA.3 it aompanies the multi-parent rossover in arole whih is normally �lled in by mutation.3.2 Knowledge Based Fitness and Geneti OperatorsIn [44, 43℄ M. C. Ri� Rojas introdues an EA for solving CSPs whih uses infor-mation about the onstraint network in the �tness funtion and in the genetioperators (rossover and mutation). The �tness funtion is based on the no-tion of error evaluation of a onstraint. The error evaluation of a onstraint isthe sum of the number of variables of the onstraint and the number of vari-ables that are onneted to these variables in the CSP network. The �tness



funtion of an individual, alled ar-�tness, is the sum of error evaluations ofall the violated onstraints in the individual. The mutation operator, alledar-mutation, selets randomly a variable of an individual and assigns to thatvariable the value that minimizes the sum of the error-evaluations of the on-straints involving that variable. The rossover operator, alled ar-rossover,selets randomly two parents and builds an o�spring by means of the followingiterative proedure over all the onstraints of the onsidered CSP. Constraintsare ordered aording to their error-evaluation with respet to instantiations ofthe variables that violate the onstraints. For the two variables of a seleted(binary) onstraint , say vi; vj , the following ases are distinguished.1. If none of the two variables are instantiated in the o�spring under on-strution then:� If none of the parents satis�es , then a pair of values for vi; vj fromthe parents is seleted whih minimizes the sum of the error evalua-tions of the onstraints ontaining vi or vj whose other variables arealready instantiated in the o�spring.� If there is one parent whih satis�es , then that parent supplies thevalues for the hild.� If both parents satisfy , then the parent whih has the higher �tnessprovides its values for vi; vj .2. If only one variable, say vi, is not instantiated in the o�spring underonstrution, then the value for vi is seleted from the parent minimizingthe sum of the error-evaluations of the onstraints involving vi.3. If both variables are instantiated in the o�spring under onstrution, thenthe next onstraint (in the ordering desribed above) is seleted.The main features of a GA based on this approah are summarized in Table 2.Crossover operator Ar-rossover operatorMutation operator Ar-mutation operatorFitness funtion Ar-�tnessExtra NoneTable 2: Spei� features of Ar-GA3.3 Glass Box ApproahIn [27℄ E. Marhiori introdues an EA for solving CSPs whih transforms on-straints into a anonial form in suh a way that there is only one single (typeof) primitive onstraint. This approah, alled glass box approah, is used inonstraint programming [48℄, where CSPs are given in impliit form by means of



formulas of a given spei�ation language. For instane, for the N-Queens Prob-lem, we have the well known formulation in terms of the following onstraints,where abs denotes absolute value:� vi 6= vj for all i 6= j (two queens annot be on the same row).� abs(vi � vj) 6= abs(i� j) for all i 6= j (two queens annot be on the samediagonal).By deomposing omplex onstraints into primitive ones, the resulting on-straints have the same granularity and therefore the same intrinsi diÆulty.This rewriting of onstraints, alled onstraint proessing , is done in two steps:elimination of funtional onstraints (as in GENOCOP [33℄) and deomposition ofthe CSP into primitive onstraints. The hoie of primitive onstraints dependson the spei�ation language. The primitive onstraints hosen in the exam-ples onsidered in [27℄, the N-Queens Problem and the Five Houses Puzzle, arelinear inequalities of the form: � � vi � � � vj 6= . When all onstraints areredued to the same form, a single probabilisti repair rule is applied, alleddependeny propagation. The repair rule used in the examples is of the formif ��pi�� �pj =  then hange pi or pj . The violated onstraints are proessedin random order. Repairing a violated onstraint an result in the produtionof new violated onstraints, whih will not be repaired. Thus at the end of therepairing proess the hromosome will not in general be a solution. Note thatthis kind of EA is designed under the impliit assumption that CSPs are givenin impliit form by means of formulas in some spei�ation language.A simple heuristi an be used in the repair rule by seleting the variablewhose value has to be hanged as the one whih ours in the largest number ofonstraints, and by setting its value to a di�erent value in the variable domain.The main features of this EA are summarized in Table 3.Crossover operator One-point rossoverMutation operator Random mutationFitness funtion Number of violated onstraintsExtra Repair ruleTable 3: Main features of Glass-Box GA3.4 Geneti loal searhIn [28℄ Marhiori and Steenbeek introdued a geneti loal searh (GLS) al-gorithm for random binary CSPs, alled RIGA (Repair Improve GA). In thisapproah, heuristi information is not inorporated into the GA operators or�tness funtion, but is inluded into the GA as a separate module in the formof a loal searh proedure. The idea is to ombine a simple GA with a loalsearh proedure, where the GA is used to explore the searh spae, while theloal searh proedure is mainly responsible for the exploitation. In RIGA, the



loal searh applied to a hromosome produes a onsistent partial instantiation,that is, only some of the variables of the CSP have a value, and eah onstraintof the CSP whose variables are all instantiated dissatis�ed. Moreover, this in-stantiation annot be extended by binding some non-instantiated variable toa value without violating the onsisteny. A hromosome is a sequene of a-tual domains (a subset of the domain), one for eah variable of the CSP. RIGAonsists of two main phases:� Repair: a hromosome is transformed into a onsistent partial instantia-tion by removing values from the atual domains of the variables.� Improve: the onsistent partial instantiation is optimized and maximized.The main features of the GLS algorithm are summarized in Table 4.Crossover operator UniformMutation operator Random mutationFitness funtion Number of instantiated variablesExtra Loal searhTable 4: Main features of the GLS algorithm3.5 Co-evolutionary ApproahThis approah has been tested by Paredis on di�erent problems, suh as neu-ral net learning [39℄, onstraint satisfation [38, 39℄ and searhing for ellularautomata that solve the density lassi�ation task [40℄.In the o-evolutionary approah for CSPs two populations evolve aordingto a predator-prey model: a population of (andidate) solutions and a popu-lation of onstraints. The seletion pressure on individuals of one populationdepends on the �tness of the members of the other population. The �tness ofan individual in either of these populations is based on a history of enoun-ters. An enounter means that a onstraint from the onstraint population ismathed with a hromosome from the solutions population. If the onstraint isnot violated by the hromosome, the individual from the solutions populationgets a point. Otherwise, the onstraint gets a point. The �tness of an individ-ual is the number of points it has obtained in the last 25 enounters. In thisway, individuals in the onstraint population whih have been often violatedby members of the solutions population have higher �tness. This fores thesolutions to onentrate on more diÆult onstraints. At every generation ofthe EA, 20 enounters are exeuted by repeatedly seleting pairs of individualsfrom the populations, biasing the seletion towards �tter individuals. Clearly,mutation and rossover are only applied to the solutions population. Parentsfor rossover are seleted using linear ranked seletion [49℄. The main featuresof this EA are summarized in Table 5.Another noteworthy example of using a oevolutionary approah to solvingsatisfation problems was done by Hisashi Handa et al. in [22, 23℄r. Here



Crossover operator Two-point rossoverRandom mutationFitness funtion Number of points in last 25 enountersExtra Co-evolutionTable 5: Main features of the o-evolutionary algorithmthe host population of solutions ompetes with a parasite population of usefulshemata. These and suessive papers explore the use of di�erent operators aswell as demonstrate the e�etiveness of this kind of oevolutionary approah.3.6 Heuristi-Based Mirogeneti MethodIn the approah proposed by Dozier et al in [7℄, and further re�ned in [4, 8℄,information about the onstraints is inorporated both in the geneti operatorsand in the �tness funtion. In the Mirogeneti Iterative Desent Algorithm the�tness funtion is adaptive and employs Morris' Breakout Creating Mehanismto esape from loal optima. At eah generation an o�spring is reated bymutating a spei� gene of the seleted hromosome, alled pivot gene, andthat o�spring replaes the worst individual of the atual population. The newvalue for that gene as well as the pivot gene are heuristially seleted. Roughly,the �tness funtion of a hromosome is determined by adding a suitable penaltyterm to the number of onstraint violations the hromosome is involved in. Thepenalty term is the sum of the weights of all the breakouts3 whose values ourin the hromosome. The set of breakouts is initially empty and it is modi�edduring the exeution by inreasing the weights of breakouts and by adding newbreakouts aording to the tehnique used in the Iterative Desent Method [37℄.Crossover operator NoneMutation operator Singlepoint heuristi mutationFitness funtion Heuristi basedExtra NoneTable 6: Main features of heuristi-based mirogeneti algorithmIn [4, 8℄, this algorithm is improved by introduing a number of novel fea-tures, like a mehanism for reduing the number of redundant evaluations, anovel rossover operator, and a tehnique for deteting inonsisteny.3.7 Stepwise Adaptation of WeightsThe Stepwise Adaptation of Weights (SAW) mehanism has been introdued byEiben and van der Hauw [11℄ as an improved version of the weight adaptation3A breakout onsists of two parts: 1) a pair of values that violates a onstraint; 2) a weightassoiated to that pair



mehanism of Eiben, Rau�e and Ruttkay [16, 17℄. In several omparisons theSAW-ing EA proved to be a superior tehnique for solving spei� CSPs [2, 12℄.The basi idea behind the SAW-ing mehanism is that onstraints that are notsatis�ed after a ertain number of steps must be hard, thus must be given ahigh weight (penalty). The realization of this idea onstitutes of initializing theweights at 1 and re-setting them by adding a value Æw after a ertain period.Re-setting is only applied to those onstraints that are violated by the bestindividual of the given population. Earlier studies indiated the good perfor-mane of a simple (1+1) sheme, using a singleton population and exlusivelymutation to reate o�spring. The representation is based on a permutation ofthe problem variables; a permutation is transformed to a partial instantiationby a simple deoder that onsiders the variables in the order they our in thehromosome and assigns the �rst possible domain value to that variable. If novalue is possible without introduing a onstraint violation, the variable is leftuninstantiated. Uninstantiated variables are, then, penalized and the �tness ofthe hromosome (a permutation) is the total of these penalties. Let us notethat penalizing uninstantiated variables is a muh rougher estimation of solu-tion quality than penalizing violated onstraints. This option worked well forgraph oloring.Crossover operator UniformMutation operator Random mutationFitness funtion Based on the hardness of onstraintsExtra A deoder to obtain a onsistent partial instantiationTable 7: Main features of the SAW-ing algorithm4 DisussionThe amount and quality of work in the area of evolutionary CSP solving er-tainly refutes the initial intuitive hypothesis that EAs are intrinsially unsuitedfor onstrained problems. This raises the question what makes EAs able to solveCSPs? Looking at the spei� features of EAs for CSPs one an distinguish twoategories. In the �rst ategory we �nd heuristis that an be inorporated inalmost any EA omponent, the �tness funtion, the variation operators muta-tion and reombination, the seletion mehanism, or used in a repair proedure.The seond ategory is formed by adaptive features, in partiular a �tness fun-tion that is being modi�ed during a run. All reported algorithms fall into oneof these ategories and that of Dozier et al. belongs to both.A areful look at the above features disloses that they are all based on in-formation related to the onstraints themselves. The very fat that the (global)problem to be solved is de�ned in terms of (loal) onstraints to be satis�ed fail-itates the design and usage of `triks'. The sope of appliability of these triks



is limited to onstrained problems4, but not neessarily to a partiular CSP, likeSAT or graph oloring. The �rst ategory of triks is based on the fat that thepresene of onstraints failitates measures on sub-individual strutures. Forinstane, one gene (variable) an be evaluated by the number of onits itspresent value is involved in. Suh sub-individual measures are not possible forexample in a pure funtion optimization problem, where only a whole individ-ual an be evaluated. These measures are typially used as evaluation heuristisgiving hints on how to proeed in onstruting an o�spring, or in repairing agiven individual. The seond ategory is based on the fat that the ompositenature of the problem leads to a omposite evaluation funtion. Suh a om-posite funtion an be tuned during a run by adding new nogoods (Dozier),modifying weights (SAW-ing), or hanging the referene set of onstraints usedto alulate it (oevolution).Browsing through the literature there are other aspets that (some of) thepapers share. Apparently indiret onstraint handling is more ommon pratiethan diret onstraint handling. On the other hand, in almost all appliationssome heuristis are used even if the transformed problem is a free optimizationproblem, and these heuristis are meant to inrease the hane of satisfyingonstraints. In other words, onstraints are handled diretly by these heuristis.Another noteworthy property that ours repeatedly in EAs for CSPs is thesmall size of the population. Common EA wisdom suggests that big populationsare better than small ones for they an keep geneti diversity easier, respetivelylonger. From personal ommuniations with authors and own experiene it turnsout that using small populations is always justi�ed by experiments. Exatlybeause small populations ontradit ones intuition, suh setups are only takenafter substantial experimental justi�ation. Suh an experimental omparisonsometimes leads to surprising outomes, for instane that the optimal setup isto use a population of size 1 and only mutation as searh operator [2, 10℄. In thisase it is legitimate to ask whether the resulting algorithm is still evolutionaryor is it only just a hill-limber. Clearly, this is a judgment all, but as mostpeople in evolutionary omputation aept the (1+1) and the (1,1) evolutionstrategy as members of the family, it is legitimate to say that one still has anEA in this ase.Summarizing, it seems possible to extrat some guidelines from existing lit-erature on how to takle a CSP by evolutionary algorithms. A short list ofpromising options is:1. Use, possibly existing, heuristis to estimate the quality of sub-individualentities (like one variable assignment) in the omponents of the EA: �tnessfuntion, mutation and reombination operators, seletion, repair meha-nism.2. Exploit the omposite nature of the �tness funtion and hange its om-position over time. During the searh information is olleted (e.g. on4Atually, this is not entirely true. For instane, the SAW-ing tehnique an be easilyimported into GP for mahine learning appliations, f. [9℄



whih onstraints are hard); this information an be very well utilized.3. Try small populations and mutation only shemes.5 Assessment of EAs for CSPsThe foregoing setions have indiated that evolutionary algorithms an solveonstrained problems, in partiular CSPs. But are these evolutionary CSPsolvers ompetitive with traditional tehniques? Some papers draw a ompar-ison between an EA and another tehnique, for instane on 3-SAT and graph3-oloring. In general, however, this question is still open.Performing an experimental omparison between algorithms, in partiular,between evolutionary and other type of problem solvers implies a number ofmethodologial questions:1. Whih benhmark problems and problem instanes should be used?2. Whih ompetitor algorithms should be used?3. Whih omparative measures should be used?As for the problems and problem instanes one ould distinguish two mainapproahes: the repository and the generator approah. The �rst one amountsto obtaining prepared problem instanes that are freely available from (Web-based) repositories, for instane the Constraints Arhive at http://www.s.unh.edu//arhive. The advantage of this approah is that the problem in-stanes are `interesting' in the sense that other researhers have investigated andevaluated them already. Besides, an arhive often ontains performane reportsof other tehniques, thereby providing a diret feedbak on one's own ahieve-ments. Using a problem instane generator (whih of ourse ould be omingfrom an arhive) means that problem instanes are produed on-the-spot. Suha generator usually has some problem spei� parameters, for instane the num-ber of lauses and the number of variables for 3-SAT, or the onstraint densityand onstraint tightness for binary CSPs. The advantage of this approah isthat the hardness of the problem instanes an be tuned by the parameters ofthe generator. Reent researh has shed light on the loation of really hardproblem instanes, the so-alled phase transition, for di�erent lasses of prob-lems [5, 20, 21, 24, 35, 41, 42, 45℄. A generator makes it possible to performa systemati investigation in and around the hardest parameter range. Theurrently available EA literature mostly follows the repository approah tak-ling ommonly studied problems, like N-queens5, 3-SAT, graph oloring, or theZebra puzzle. Dozier et al. use a random problem instane generator for binary5This problem has a rather exeptional feature: if its size (the number of queens) is in-reased, it gets easier [36℄. This makes it somewhat uninteresting as the traditional `sale-upompetition' won't work with it.



CSPs6 whih reates instanes for di�erent onstraint tightness and density val-ues [7℄. Later on this generator has been adopted and reimplemented by Eibenet al. [13℄.Advises on the hoie for a ompetitor algorithm boil down to the samesuggestion: hoose the best one available to represent a real hallenge. Im-plementing this priniple is, of ourse, not always simple. It ould be hard to�nd out whih spei� algorithm shows the best performane on a given (typeof) problem. This is not only due to the diÆulties of �nding information.Sometimes it is not lear whih riteria to use for basing the hoie upon.This problem leads us to the third aspet of omparative experimental re-searh: that of the omparative measures. The performane of a problem solvingalgorithm an be measured in di�erent ways. Speed and solution quality arewidely used, and for stohasti algorithms, as EAs are, the probability of �ndinga solution (of ertain quality) is also a ommon measure.Speed is often measured in elapsed omputer time, CPU time or user time.However, this measure is depending on the spei� hardware, operating system,ompiler, network load, et. and therefore is ill-suited for reproduible researh.In other words, repeating the same experiments, possibly elsewhere, may leadto di�erent results. For generate-and-test style algorithms, as EAs are, a om-mon way around this problem is to ount the number of points visited in thesearh spae. Sine EAs immediately evaluate eah newly generated andidatesolution, this measure is usually expressed as the number of �tness evaluations.Fored by the stohasti nature of EAs this is always measured over a number ofindependent runs and the Average number of Evaluations to a Solution (AES)is used. It is important to note that the average is only taken over the suessfulruns (\to a Solution"), otherwise the atually used maximum number of eval-uations would distort the statistis. Fair as this measure seems, there are twopossible problems with it. First, it ould be misleading if an EA uses `hiddenlabor', for instane some heuristis inorporated in the geneti operators, in the�tness funtion, or in a loal searh module (like in GLS). The extra omputa-tional e�ort due to hidden labor an inrease performane, but are invisible tothe AES measure7. Seond, it an be diÆult to apply AES for omparing anEA with searh algorithms that do not work in the same searh spae. An EAis iteratively improving omplete andidate solutions, so one elementary searhstep is the reation of one new andidate solution. However, a onstrutivesearh algorithm would work in the spae of partial solutions (inluding theomplete ones that an EA is searhing through) and one elementary searh stepis extending the urrent solution. Counting the number of elementary searhsteps is misleading if the searh steps are di�erent. A ommon treatment forboth of these problems with AES (hidden labor, di�erent searh steps) is to6Binary CSPs (where eah onstraint onerns exatly two variables) form a nie problemlass. While they have a transparent struture it holds that every CSP is equivalent to abinary CSP [47℄.7In the CSP literature the number of onstraint heks is used ommonly as speed measure.It seems an interesting option to use this into measure in ombination with or as an alternativeto the AES measure in evolutionary omputing



ompare sale-up behavior of the algorithms. To this end a problem is neededthat is salable, that is, its size an be hanged. The number of variables is anatural sale-up parameter for many problems. Two di�erent types of methodsan then be ompared by plotting their own speed measure �gures against theproblem size. Even though the measures used in eah urve are di�erent, thesteepness information is a fair basis for omparison: the urve that grows at ahigher rate indiates an inferior algorithm.Solution quality of approximate algorithms for optimization is most om-monly de�ned as the distane to an optimum at termination, e.g. jfbest � foptj,where f is the funtion to be optimized, fbest is the f value of best andidatesolution found in the given run and fopt is the optimal f value. For stohastialgorithms this is averaged over a number of independent runs and in evolu-tionary omputing theMean Best Fitness (MBF) is a ommonly used name forthis measure. As we have seen in this paper, for onstraint satisfation problemsit is not straightforward what f to use { there are more sensible options. Foromparing the solution quality of algorithms this means that there are moresensible quality measures. The problem is then, that most probably one woulduse the funtion f that has been used to �nd a solution and this an be di�erentfor another algorithm. For instane, algorithm A ould use the number of un-satis�ed onstraints as �tness funtion and algorithm B ould use the numberof wrong variable instantiations. It is then not lear what measure to use foromparing the two algorithms. Moreover, in onstraint satisfation it is oftennot good enough to be lose to a solution. A andidate is either good (satis�esall onstraints) or bad (violates some onstraints). In this ase, it makes nosense to look at the distane to a solution as a quality measure, hene the MBFmeasure is not appropriate.The third measure whih is often used to judge stohasti algorithms, andthus EAs, is the probability of �nding a solution (of ertain quality). Thisprobability an be estimated by performing a number of independent runs underthe same setup on the same type of problems and keep a reord on the perentageof runs that did �nd a solution. This Suess Rate (SR) ompletes the pitureobtained by AES and MBF. Note that SR and MBF are related but do providedi�erent information, and all di�erent ombinations of good/bad SR/MBF arepossible. For instane, bad (low) SR and good (high) MBF indiate a goodapproximator algorithm: it gets lose, but misses the last step to hit the solution.Likewise, a good (high) SR and a bad (low) MBF ombination is also possible.Suh a ombination shows that the algorithm mostly performs perfetly, butsometimes it does a very very bad job.6 ConlusionThis survey of related work dislosed how EAs an be made suessful in solvingCSPs. Roughly lassifying the options we enountered, the key features are theutilization of heuristis and/or the adaptation of the �tness funtion during arun. Both features are based on the struture of the problems in question, so



in a way the problem of how to treat CSPs arries its own solution.In partiular, onstraints failitate the use of sub-individual measures toevaluate parts of andidate solutions. Suh sub-individual measures are notpossible for example in a pure funtion optimization problem, where only awhole individual an be evaluated. These measures lead to heuristis that anbe inorporated in pratially any omponent of an EA, the �tness funtion,mutation and reombination operators, seletion, or used in a repair (or morein general loal searh) mehanism.Likewise, it is the presene of onstraints that leads to a �tness funtionomposed from separate piees. This omposition or the relative importane ofthe omponents an be hanged over time. During the searh information isolleted (e.g. on whih onstraints are hard) and this information an be verywell utilized.The �eld of evolutionary onstraint satisfation is relatively new. Inten-sive investigations started approximately in the mid nineties, while evolution-ary omputing itself has it roots in the sixties. Beause of the short historyoherene is laking and the �ndings of individual experimental studies annotbe generalized (yet). There are a number of researh diretions that should bepursued in the future for further development. These inlude:� Study of the problem area. A lot an be learned from the traditionalonstrained literature about suh problems. Existing knowledge shouldbe imported into ore EC researh.� Cross-fertilization between the insights onerning EAs for (ontinuous)COPs and (disrete) CSPs. At present, these two sub-areas are pratiallyunrelated.� Sound methodology: how to set up fair experimental researh, how toobtain good benhmarks, how to ompare EAs with other tehniques.� Theory: better analysis of the spei� features of onstrained problems,and the inuene of these features on EA behavior.Referenes[1℄ Th. B�ak, editor. Proeedings of the 7th International Conferene on Ge-neti Algorithms, San Franiso, CA, 1997. Morgan Kaufmann Publishers,In.[2℄ Th. B�ak, A.E. Eiben, and M.E. Vink. A superior evolutionary algorithmfor 3-SAT. In V.W. Porto, N. Saravanan, D. Waagen, and A.E. Eiben, ed-itors, Proeedings of the 7th Annual Conferene on Evolutionary Program-ming, number 1477 in Leture Notes in Computer Siene, pages 125{136,Berlin, 1998. Springer-Verlag.
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