
How to Handle Constraints with EvolutionaryAlgorithmsB.G.W. Craenen A.E. Eiben E. Mar
hioriAbstra
tIn this paper we des
ribe evolutionary algorithms (EAs) for 
onstrainthandling. Constraint handling is not straightforward in an EA be
ause thesear
h operators mutation and re
ombination are `blind' to 
onstraints.Hen
e, there is no guarantee that if the parents satisfy some 
onstraintsthe o�spring will satisfy them as well. This suggests that the presen
eof 
onstraints in a problem makes EAs intrinsi
ally unsuited to solve thisproblem. This should espe
ially hold when the problem does not 
ontainan obje
tive fun
tion to be optimized, but only 
onstraints { the 
ate-gory of 
onstraint satisfa
tion problems. A survey of related literature,however, indi
ates that there are quite a few su

essful attempts to evolu-tionary 
onstraint satisfa
tion. Based on this survey we identify a numberof 
ommon features in these approa
hes and arrive to the 
on
lusion thatEAs 
an be e�e
tive 
onstraint solvers when knowledge about the 
on-straints is in
orporated either into the geneti
 operators, in the �tnessfun
tion, or in repair me
hanisms. We 
on
lude by 
onsidering a numberof key questions on resear
h methodology.1 Introdu
tionMany pra
ti
al problems 
an be formalized as 
onstrained (optimization) prob-lems. These problems are in general tough (NP-hard), hen
e they need heuristi
algorithms in order to be (approximately) solved in a short time.EAs show a good ratio of (implementation) e�ort to performan
e, and area
knowledged as good solvers for tough problems. However, no standard EAtakes 
onstraints into a

ount. That is, the regular sear
h operators, mutationand re
ombination, in evolutionary programming, evolution strategies, geneti
algorithms, and geneti
 programming, are `blind' to 
onstraints. Hen
e, even ifthe parents are satisfying some 
onstraints they might very well get o�spring vi-olating them. Te
hni
ally, this means that EAs perform un
onstrained sear
h.This observation suggests that EAs are intrinsi
ally unsuited to handle 
on-strained problems.In this paper we will have a 
loser look at this phenomenon. We start with de-s
ribing approa
hes for handling 
onstraints in evolutionary 
omputation. Nextwe present an overview of EAs for 
onstraint satisfa
tion problems, pointing out1



the key features that have been added to the standard EA ma
hinery in orderto handle 
onstraints. In Se
tion 4 we summarize the main lessons learned fromthe overview and indi
ate where 
onstraints provide extra information on theproblem and how this information 
an be utilized by an evolutionary algorithm.Thereafter, Se
tion 5 handles a number of methodologi
al 
onsiderations re-garding resear
h on solving 
onstraint satisfa
tion problems (CSPs) by meansof EAs. The �nal se
tion 
on
ludes this paper reiterating that EAs are suitedto treat 
onstrained problems and tou
hes on a 
ouple of promising resear
hdire
tions.2 Constraints handling in EAsThere are many ways to handle 
onstraints in an EA. At a high 
on
eptual levelwe 
an distinguish two 
ases, depending on whether they are handled indire
tlyor dire
tly. Indire
t 
onstraint handling means that we 
ir
umvent the problemof satisfying 
onstraints by in
orporating them in the �tness fun
tion f su
h thatf optimal implies that the 
onstraints are satis�ed, and use the optimizationpower of the EA to �nd a solution. By dire
t 
onstraint handling here we meanthat we leave the 
onstraints as they are and `adapt' the EA to enfor
e them.We will return later on the di�eren
es between these two 
ases. Let us notedire
t and indire
t 
onstraint handling 
an be applied in 
ombination, i.e., inone appli
ation we 
an: handle all 
onstraints indire
tly; handle all 
onstraintsdire
tly, or; handle some 
onstraints dire
tly and others indire
tly. Formally,indire
t 
onstraint handling means transforming 
onstraints into optimizationobje
tives. The resulting problem transformation imposes the requirement thatthe (eliminated) 
onstraints are satis�ed if the (new) optimization obje
tives areat their optimum. This implies that the given problem is transformed into anequivalent problem meaning that the two problems share the same solutions1.For a given 
onstrained problem several equivalent problems 
an be de�nedby 
hoosing the subset of the 
onstraints to be eliminated and/or de�ning theobje
tive fun
tion measuring their satisfa
tion di�erently. So, there are twoimportant questions to be answered.� Whi
h 
onstraints should be handled dire
tly (kept as 
onstraints) andwhi
h should be handled indire
tly (repla
ed by optimization obje
tives)?� How to de�ne the optimization obje
tives 
orresponding to indire
tly han-dled 
onstraints?Treating 
onstraints dire
tly implies that violating them is not re
e
ted in the�tness fun
tion, thus there is no bias towards 
hromosomes satisfying them.Therefore, the population will not be
ome less and less infeasible w.r.t. these
onstraints.21A
tually, it is suÆ
ient to require that the solutions of the transformed problem are alsosolutions of the original problem but this nuan
e is not relevant for this dis
ussion.2At this point we should make a distin
tion between feasibility in the original problem
ontext and (relaxed) feasibility in the 
ontext of the transformed problem. E.g. we 
ould



This means that we have to 
reate and maintain feasible 
hromosomes inthe population. The basi
 problem in this 
ase is that the regular geneti
operators are blind to 
onstraints, mutating one or 
rossing over two feasible
hromosomes 
an result in infeasible o�spring. Typi
al approa
hes to handle
onstraints dire
tly are the following:� eliminating infeasible 
andidates,� repairing infeasible 
andidates,� preserving feasibility by spe
ial operators,� de
oding, i.e., transforming the sear
h spa
e.Eliminating infeasible 
andidates is very ineÆ
ient, and therefore hardly appli-
able. Repairing infeasible 
andidates requires a repair pro
edure that modi�esa given 
hromosome su
h that it will not violate 
onstraints. This te
hnique isthus problem dependent but if a good repair pro
edure 
an be developed then itworks well in pra
ti
e, see for instan
e Se
tion 4.5 in [33℄ for a 
omparative 
asestudy. The preserving approa
h amounts to designing and applying problemspe
i�
 operators that do preserve the feasibility of parent 
hromosomes. Usingsu
h operators the sear
h be
omes quasi-free, be
ause the o�spring remains inthe feasible sear
h spa
e, if the parents were feasible. This is the 
ase in se-quen
ing appli
ations, where a feasible 
hromosome 
ontains ea
h label (allele)exa
tly on
e. The well-known order-based 
rossovers, [19, 46℄, are designed topreserve this property. Note that the preserving approa
h requires the 
reationof a feasible initial population, whi
h 
an be NP-hard, e.g., for the travelingsalesman problem with time windows. Finally, de
oding 
an simplify the prob-lem and allow an eÆ
ient EA. Formally, de
oding 
an be seen as shifting to asear
h spa
e that is di�erent from the Cartesian produ
t of the domains of thevariables in the original problem formulation. Elements of the new sear
h spa
eS0 serve as inputs for a de
oding pro
edure that 
reates feasible solutions, andit is assumed that a free (modulo preserving operators) sear
h 
an be performedin S0 by an EA. For a ni
e illustration we refer again to Se
tion 4.5 in [33℄.In 
ase of indire
t 
onstraint handling the optimization obje
tives repla
ingthe 
onstraints are traditionally viewed as penalties for 
onstraint violation,hen
e to be minimized. In general penalties are given for violated 
onstraintsalthough some (problem spe
i�
) EA allo
ate penalties for wrongly instantiatedvariables or, when di�erent from the other options, as the distan
e to a feasiblesolution.Advantages of indire
t 
onstraint handling are:� generality,� redu
tion of the problem to `simple' optimization,� possibility of embedding user preferen
es by means of weights.introdu
e the name allowability for the 
onjun
tion of those 
onstraints that are handleddire
tly. However, to keep the dis
ussion simple we will use the term feasibility for both 
ases.



Disadvantages of indire
t 
onstraint handling are:� loss of information by pa
king everything in a single number,� does not work well for sparse problems,� how to merge original obje
tive fun
tion with penalties?There are other 
lassi�
ation s
hemes of 
onstraint handling te
hniques in EC.For instan
e, the 
ategorization in [32℄, distinguishes pro-
hoi
e and pro-lifete
hniques, where pro-
hoi
e en
ompasses eliminating, de
oding, and preserv-ing, while pro-life 
overs penalty based and repairing approa
hes. Overviews and
omparisons published on evolutionary 
omputation te
hniques for 
onstrainthandling so far mainly 
on
ern 
ontinuous domains, [29, 30, 31, 34℄. Constrainthandling in 
ontinuous and dis
rete domains rely to a 
ertain extent on thesame ideas. There are, however, also di�eren
es, for instan
e in 
ontinuous do-mains 
onstraints 
an be 
hara
terized as linear, non-linear, et
. and in 
ase oflinear 
onstraints spe
ial averaging re
ombination operators 
an guarantee thato�spring of feasible parents are feasible. In dis
rete domains this is impossible.The rest of this paper is 
on
erned with a 
omparative analysis of a numberof methods based on EAs for solving CSPs that have been so far introdu
ed. Our
omparison is mainly based on the way 
onstraints are handled, either dire
tlyor indire
tly. Therefore our dis
ussion will not take into a

ount the parti
ularparameters setting of a GA, like the role of mutation and 
rossover rates, or therole of the sele
tion me
hanism and the size of the population. This survey doesnot pretend to be a 
omprehensive a

ount of all the works on solving CSP usingEAs. It is rather meant to emphasize the main ideas on 
onstraint handling (over�nite domains) whi
h have been employed in evolutionary algorithms.3 Evolutionary CSP solversUsually a CSP is stated as a problem of �nding an instantiation of variablesv1; : : : ; vn within the �nite domains D1; : : : ; Dn su
h that 
onstraints (relations)
1; : : : ; 
m pres
ribed for (some of) the variables hold. The formula � is thenthe 
onjun
tion of the given 
onstraints. One may be interested in one, someor all solutions, or only in the existen
e of a solution.In the last years there have been reports on quite a few EAs for solving CSPs(for �nding one solution) having a satisfa
tory performan
e. The majority ofthese EAs perform indire
t 
onstraint handling by means of a penalty based�tness fun
tion, and possibly in
orporate knowledge about the CSP into thegeneti
 operators, the �tness fun
tion, or as apart module in the form of lo
alsear
h. First, we des
ribe four approa
hes for solving CSPs using GAs thatexploit information on the 
onstraint network. Next, we dis
uss other threemethods for solving CSPs whi
h make use of an adaptive �tness fun
tion inorder to enhan
e the sear
h for a good (approximate) solution.



3.1 Heuristi
 Geneti
 OperatorsIn [14, 15℄, Eiben et al. propose to in
orporate existing CSP heuristi
s intogeneti
 operators. Two heuristi
 based geneti
 operators are spe
i�ed: an asex-ual operator that transforms one individual into a new one and a multi-parentoperator that generates one o�spring using two or more parents. The asexualheuristi
 based geneti
 operator sele
ts a number of variables in a given individ-ual, and then 
hooses new values for these variables. Both steps are guided bya heuristi
: for instan
e, the sele
ted variables are those involved in the largestnumber of violated 
onstraints, and the new values for those variables are thevalues whi
h maximize the number of 
onstraints that be
ome satis�ed. Thebasi
 me
hanism of the multi-parent heuristi
 
rossover operator is s
anning:for ea
h position, the values of the variables of the parents in that position areused to determine the value of the variable in that position in the 
hild. The se-le
tion of the value is done using the heuristi
 employed in the asexual operator.The di�eren
e with the asexual heuristi
 operator is that the heuristi
 does notevaluate all possible values but only those of the variables in the parents. Themulti-parent 
rossover is applied to more parents (typi
al value 5) and produ
esone 
hild. Version 1 Version 2 Version 3Main Asexual Multi-parent Multi-parentoperator heuristi
 heuristi
 heuristi
operator 
rossover 
rossoverSe
ondary Random Random Asexualoperator mutation mutation heuristi
operatorFitness Number of violated 
onstraintsfun
tionExtra NoneTable 1: Spe
i�
 features of three implemented versions of H-GAThe main features of three EAs based on this approa
h, 
alled H-GA.1,H-GA.2, and H-GA.3, are illustrated in Table 1. In the H-GA.1 version theheuristi
 based geneti
 operator serves as the main sear
h operator assisted by(random) mutation. In H-GA.3 it a

ompanies the multi-parent 
rossover in arole whi
h is normally �lled in by mutation.3.2 Knowledge Based Fitness and Geneti
 OperatorsIn [44, 43℄ M. C. Ri� Rojas introdu
es an EA for solving CSPs whi
h uses infor-mation about the 
onstraint network in the �tness fun
tion and in the geneti
operators (
rossover and mutation). The �tness fun
tion is based on the no-tion of error evaluation of a 
onstraint. The error evaluation of a 
onstraint isthe sum of the number of variables of the 
onstraint and the number of vari-ables that are 
onne
ted to these variables in the CSP network. The �tness



fun
tion of an individual, 
alled ar
-�tness, is the sum of error evaluations ofall the violated 
onstraints in the individual. The mutation operator, 
alledar
-mutation, sele
ts randomly a variable of an individual and assigns to thatvariable the value that minimizes the sum of the error-evaluations of the 
on-straints involving that variable. The 
rossover operator, 
alled ar
-
rossover,sele
ts randomly two parents and builds an o�spring by means of the followingiterative pro
edure over all the 
onstraints of the 
onsidered CSP. Constraintsare ordered a

ording to their error-evaluation with respe
t to instantiations ofthe variables that violate the 
onstraints. For the two variables of a sele
ted(binary) 
onstraint 
, say vi; vj , the following 
ases are distinguished.1. If none of the two variables are instantiated in the o�spring under 
on-stru
tion then:� If none of the parents satis�es 
, then a pair of values for vi; vj fromthe parents is sele
ted whi
h minimizes the sum of the error evalua-tions of the 
onstraints 
ontaining vi or vj whose other variables arealready instantiated in the o�spring.� If there is one parent whi
h satis�es 
, then that parent supplies thevalues for the 
hild.� If both parents satisfy 
, then the parent whi
h has the higher �tnessprovides its values for vi; vj .2. If only one variable, say vi, is not instantiated in the o�spring under
onstru
tion, then the value for vi is sele
ted from the parent minimizingthe sum of the error-evaluations of the 
onstraints involving vi.3. If both variables are instantiated in the o�spring under 
onstru
tion, thenthe next 
onstraint (in the ordering des
ribed above) is sele
ted.The main features of a GA based on this approa
h are summarized in Table 2.Crossover operator Ar
-
rossover operatorMutation operator Ar
-mutation operatorFitness fun
tion Ar
-�tnessExtra NoneTable 2: Spe
i�
 features of Ar
-GA3.3 Glass Box Approa
hIn [27℄ E. Mar
hiori introdu
es an EA for solving CSPs whi
h transforms 
on-straints into a 
anoni
al form in su
h a way that there is only one single (typeof) primitive 
onstraint. This approa
h, 
alled glass box approa
h, is used in
onstraint programming [48℄, where CSPs are given in impli
it form by means of



formulas of a given spe
i�
ation language. For instan
e, for the N-Queens Prob-lem, we have the well known formulation in terms of the following 
onstraints,where abs denotes absolute value:� vi 6= vj for all i 6= j (two queens 
annot be on the same row).� abs(vi � vj) 6= abs(i� j) for all i 6= j (two queens 
annot be on the samediagonal).By de
omposing 
omplex 
onstraints into primitive ones, the resulting 
on-straints have the same granularity and therefore the same intrinsi
 diÆ
ulty.This rewriting of 
onstraints, 
alled 
onstraint pro
essing , is done in two steps:elimination of fun
tional 
onstraints (as in GENOCOP [33℄) and de
omposition ofthe CSP into primitive 
onstraints. The 
hoi
e of primitive 
onstraints dependson the spe
i�
ation language. The primitive 
onstraints 
hosen in the exam-ples 
onsidered in [27℄, the N-Queens Problem and the Five Houses Puzzle, arelinear inequalities of the form: � � vi � � � vj 6= 
. When all 
onstraints areredu
ed to the same form, a single probabilisti
 repair rule is applied, 
alleddependen
y propagation. The repair rule used in the examples is of the formif ��pi�� �pj = 
 then 
hange pi or pj . The violated 
onstraints are pro
essedin random order. Repairing a violated 
onstraint 
an result in the produ
tionof new violated 
onstraints, whi
h will not be repaired. Thus at the end of therepairing pro
ess the 
hromosome will not in general be a solution. Note thatthis kind of EA is designed under the impli
it assumption that CSPs are givenin impli
it form by means of formulas in some spe
i�
ation language.A simple heuristi
 
an be used in the repair rule by sele
ting the variablewhose value has to be 
hanged as the one whi
h o

urs in the largest number of
onstraints, and by setting its value to a di�erent value in the variable domain.The main features of this EA are summarized in Table 3.Crossover operator One-point 
rossoverMutation operator Random mutationFitness fun
tion Number of violated 
onstraintsExtra Repair ruleTable 3: Main features of Glass-Box GA3.4 Geneti
 lo
al sear
hIn [28℄ Mar
hiori and Steenbeek introdu
ed a geneti
 lo
al sear
h (GLS) al-gorithm for random binary CSPs, 
alled RIGA (Repair Improve GA). In thisapproa
h, heuristi
 information is not in
orporated into the GA operators or�tness fun
tion, but is in
luded into the GA as a separate module in the formof a lo
al sear
h pro
edure. The idea is to 
ombine a simple GA with a lo
alsear
h pro
edure, where the GA is used to explore the sear
h spa
e, while thelo
al sear
h pro
edure is mainly responsible for the exploitation. In RIGA, the



lo
al sear
h applied to a 
hromosome produ
es a 
onsistent partial instantiation,that is, only some of the variables of the CSP have a value, and ea
h 
onstraintof the CSP whose variables are all instantiated dissatis�ed. Moreover, this in-stantiation 
annot be extended by binding some non-instantiated variable toa value without violating the 
onsisten
y. A 
hromosome is a sequen
e of a
-tual domains (a subset of the domain), one for ea
h variable of the CSP. RIGA
onsists of two main phases:� Repair: a 
hromosome is transformed into a 
onsistent partial instantia-tion by removing values from the a
tual domains of the variables.� Improve: the 
onsistent partial instantiation is optimized and maximized.The main features of the GLS algorithm are summarized in Table 4.Crossover operator UniformMutation operator Random mutationFitness fun
tion Number of instantiated variablesExtra Lo
al sear
hTable 4: Main features of the GLS algorithm3.5 Co-evolutionary Approa
hThis approa
h has been tested by Paredis on di�erent problems, su
h as neu-ral net learning [39℄, 
onstraint satisfa
tion [38, 39℄ and sear
hing for 
ellularautomata that solve the density 
lassi�
ation task [40℄.In the 
o-evolutionary approa
h for CSPs two populations evolve a

ordingto a predator-prey model: a population of (
andidate) solutions and a popu-lation of 
onstraints. The sele
tion pressure on individuals of one populationdepends on the �tness of the members of the other population. The �tness ofan individual in either of these populations is based on a history of en
oun-ters. An en
ounter means that a 
onstraint from the 
onstraint population ismat
hed with a 
hromosome from the solutions population. If the 
onstraint isnot violated by the 
hromosome, the individual from the solutions populationgets a point. Otherwise, the 
onstraint gets a point. The �tness of an individ-ual is the number of points it has obtained in the last 25 en
ounters. In thisway, individuals in the 
onstraint population whi
h have been often violatedby members of the solutions population have higher �tness. This for
es thesolutions to 
on
entrate on more diÆ
ult 
onstraints. At every generation ofthe EA, 20 en
ounters are exe
uted by repeatedly sele
ting pairs of individualsfrom the populations, biasing the sele
tion towards �tter individuals. Clearly,mutation and 
rossover are only applied to the solutions population. Parentsfor 
rossover are sele
ted using linear ranked sele
tion [49℄. The main featuresof this EA are summarized in Table 5.Another noteworthy example of using a 
oevolutionary approa
h to solvingsatisfa
tion problems was done by Hisashi Handa et al. in [22, 23℄r. Here



Crossover operator Two-point 
rossoverRandom mutationFitness fun
tion Number of points in last 25 en
ountersExtra Co-evolutionTable 5: Main features of the 
o-evolutionary algorithmthe host population of solutions 
ompetes with a parasite population of usefuls
hemata. These and su

essive papers explore the use of di�erent operators aswell as demonstrate the e�e
tiveness of this kind of 
oevolutionary approa
h.3.6 Heuristi
-Based Mi
rogeneti
 MethodIn the approa
h proposed by Dozier et al in [7℄, and further re�ned in [4, 8℄,information about the 
onstraints is in
orporated both in the geneti
 operatorsand in the �tness fun
tion. In the Mi
rogeneti
 Iterative Des
ent Algorithm the�tness fun
tion is adaptive and employs Morris' Breakout Creating Me
hanismto es
ape from lo
al optima. At ea
h generation an o�spring is 
reated bymutating a spe
i�
 gene of the sele
ted 
hromosome, 
alled pivot gene, andthat o�spring repla
es the worst individual of the a
tual population. The newvalue for that gene as well as the pivot gene are heuristi
ally sele
ted. Roughly,the �tness fun
tion of a 
hromosome is determined by adding a suitable penaltyterm to the number of 
onstraint violations the 
hromosome is involved in. Thepenalty term is the sum of the weights of all the breakouts3 whose values o

urin the 
hromosome. The set of breakouts is initially empty and it is modi�edduring the exe
ution by in
reasing the weights of breakouts and by adding newbreakouts a

ording to the te
hnique used in the Iterative Des
ent Method [37℄.Crossover operator NoneMutation operator Singlepoint heuristi
 mutationFitness fun
tion Heuristi
 basedExtra NoneTable 6: Main features of heuristi
-based mi
rogeneti
 algorithmIn [4, 8℄, this algorithm is improved by introdu
ing a number of novel fea-tures, like a me
hanism for redu
ing the number of redundant evaluations, anovel 
rossover operator, and a te
hnique for dete
ting in
onsisten
y.3.7 Stepwise Adaptation of WeightsThe Stepwise Adaptation of Weights (SAW) me
hanism has been introdu
ed byEiben and van der Hauw [11℄ as an improved version of the weight adaptation3A breakout 
onsists of two parts: 1) a pair of values that violates a 
onstraint; 2) a weightasso
iated to that pair



me
hanism of Eiben, Rau�e and Ruttkay [16, 17℄. In several 
omparisons theSAW-ing EA proved to be a superior te
hnique for solving spe
i�
 CSPs [2, 12℄.The basi
 idea behind the SAW-ing me
hanism is that 
onstraints that are notsatis�ed after a 
ertain number of steps must be hard, thus must be given ahigh weight (penalty). The realization of this idea 
onstitutes of initializing theweights at 1 and re-setting them by adding a value Æw after a 
ertain period.Re-setting is only applied to those 
onstraints that are violated by the bestindividual of the given population. Earlier studies indi
ated the good perfor-man
e of a simple (1+1) s
heme, using a singleton population and ex
lusivelymutation to 
reate o�spring. The representation is based on a permutation ofthe problem variables; a permutation is transformed to a partial instantiationby a simple de
oder that 
onsiders the variables in the order they o

ur in the
hromosome and assigns the �rst possible domain value to that variable. If novalue is possible without introdu
ing a 
onstraint violation, the variable is leftuninstantiated. Uninstantiated variables are, then, penalized and the �tness ofthe 
hromosome (a permutation) is the total of these penalties. Let us notethat penalizing uninstantiated variables is a mu
h rougher estimation of solu-tion quality than penalizing violated 
onstraints. This option worked well forgraph 
oloring.Crossover operator UniformMutation operator Random mutationFitness fun
tion Based on the hardness of 
onstraintsExtra A de
oder to obtain a 
onsistent partial instantiationTable 7: Main features of the SAW-ing algorithm4 Dis
ussionThe amount and quality of work in the area of evolutionary CSP solving 
er-tainly refutes the initial intuitive hypothesis that EAs are intrinsi
ally unsuitedfor 
onstrained problems. This raises the question what makes EAs able to solveCSPs? Looking at the spe
i�
 features of EAs for CSPs one 
an distinguish two
ategories. In the �rst 
ategory we �nd heuristi
s that 
an be in
orporated inalmost any EA 
omponent, the �tness fun
tion, the variation operators muta-tion and re
ombination, the sele
tion me
hanism, or used in a repair pro
edure.The se
ond 
ategory is formed by adaptive features, in parti
ular a �tness fun
-tion that is being modi�ed during a run. All reported algorithms fall into oneof these 
ategories and that of Dozier et al. belongs to both.A 
areful look at the above features dis
loses that they are all based on in-formation related to the 
onstraints themselves. The very fa
t that the (global)problem to be solved is de�ned in terms of (lo
al) 
onstraints to be satis�ed fa
il-itates the design and usage of `tri
ks'. The s
ope of appli
ability of these tri
ks



is limited to 
onstrained problems4, but not ne
essarily to a parti
ular CSP, likeSAT or graph 
oloring. The �rst 
ategory of tri
ks is based on the fa
t that thepresen
e of 
onstraints fa
ilitates measures on sub-individual stru
tures. Forinstan
e, one gene (variable) 
an be evaluated by the number of 
on
i
ts itspresent value is involved in. Su
h sub-individual measures are not possible forexample in a pure fun
tion optimization problem, where only a whole individ-ual 
an be evaluated. These measures are typi
ally used as evaluation heuristi
sgiving hints on how to pro
eed in 
onstru
ting an o�spring, or in repairing agiven individual. The se
ond 
ategory is based on the fa
t that the 
ompositenature of the problem leads to a 
omposite evaluation fun
tion. Su
h a 
om-posite fun
tion 
an be tuned during a run by adding new nogoods (Dozier),modifying weights (SAW-ing), or 
hanging the referen
e set of 
onstraints usedto 
al
ulate it (
oevolution).Browsing through the literature there are other aspe
ts that (some of) thepapers share. Apparently indire
t 
onstraint handling is more 
ommon pra
ti
ethan dire
t 
onstraint handling. On the other hand, in almost all appli
ationssome heuristi
s are used even if the transformed problem is a free optimizationproblem, and these heuristi
s are meant to in
rease the 
han
e of satisfying
onstraints. In other words, 
onstraints are handled dire
tly by these heuristi
s.Another noteworthy property that o

urs repeatedly in EAs for CSPs is thesmall size of the population. Common EA wisdom suggests that big populationsare better than small ones for they 
an keep geneti
 diversity easier, respe
tivelylonger. From personal 
ommuni
ations with authors and own experien
e it turnsout that using small populations is always justi�ed by experiments. Exa
tlybe
ause small populations 
ontradi
t ones intuition, su
h setups are only takenafter substantial experimental justi�
ation. Su
h an experimental 
omparisonsometimes leads to surprising out
omes, for instan
e that the optimal setup isto use a population of size 1 and only mutation as sear
h operator [2, 10℄. In this
ase it is legitimate to ask whether the resulting algorithm is still evolutionaryor is it only just a hill-
limber. Clearly, this is a judgment 
all, but as mostpeople in evolutionary 
omputation a

ept the (1+1) and the (1,1) evolutionstrategy as members of the family, it is legitimate to say that one still has anEA in this 
ase.Summarizing, it seems possible to extra
t some guidelines from existing lit-erature on how to ta
kle a CSP by evolutionary algorithms. A short list ofpromising options is:1. Use, possibly existing, heuristi
s to estimate the quality of sub-individualentities (like one variable assignment) in the 
omponents of the EA: �tnessfun
tion, mutation and re
ombination operators, sele
tion, repair me
ha-nism.2. Exploit the 
omposite nature of the �tness fun
tion and 
hange its 
om-position over time. During the sear
h information is 
olle
ted (e.g. on4A
tually, this is not entirely true. For instan
e, the SAW-ing te
hnique 
an be easilyimported into GP for ma
hine learning appli
ations, 
f. [9℄



whi
h 
onstraints are hard); this information 
an be very well utilized.3. Try small populations and mutation only s
hemes.5 Assessment of EAs for CSPsThe foregoing se
tions have indi
ated that evolutionary algorithms 
an solve
onstrained problems, in parti
ular CSPs. But are these evolutionary CSPsolvers 
ompetitive with traditional te
hniques? Some papers draw a 
ompar-ison between an EA and another te
hnique, for instan
e on 3-SAT and graph3-
oloring. In general, however, this question is still open.Performing an experimental 
omparison between algorithms, in parti
ular,between evolutionary and other type of problem solvers implies a number ofmethodologi
al questions:1. Whi
h ben
hmark problems and problem instan
es should be used?2. Whi
h 
ompetitor algorithms should be used?3. Whi
h 
omparative measures should be used?As for the problems and problem instan
es one 
ould distinguish two mainapproa
hes: the repository and the generator approa
h. The �rst one amountsto obtaining prepared problem instan
es that are freely available from (Web-based) repositories, for instan
e the Constraints Ar
hive at http://www.
s.unh.edu/


/ar
hive. The advantage of this approa
h is that the problem in-stan
es are `interesting' in the sense that other resear
hers have investigated andevaluated them already. Besides, an ar
hive often 
ontains performan
e reportsof other te
hniques, thereby providing a dire
t feedba
k on one's own a
hieve-ments. Using a problem instan
e generator (whi
h of 
ourse 
ould be 
omingfrom an ar
hive) means that problem instan
es are produ
ed on-the-spot. Su
ha generator usually has some problem spe
i�
 parameters, for instan
e the num-ber of 
lauses and the number of variables for 3-SAT, or the 
onstraint densityand 
onstraint tightness for binary CSPs. The advantage of this approa
h isthat the hardness of the problem instan
es 
an be tuned by the parameters ofthe generator. Re
ent resear
h has shed light on the lo
ation of really hardproblem instan
es, the so-
alled phase transition, for di�erent 
lasses of prob-lems [5, 20, 21, 24, 35, 41, 42, 45℄. A generator makes it possible to performa systemati
 investigation in and around the hardest parameter range. The
urrently available EA literature mostly follows the repository approa
h ta
k-ling 
ommonly studied problems, like N-queens5, 3-SAT, graph 
oloring, or theZebra puzzle. Dozier et al. use a random problem instan
e generator for binary5This problem has a rather ex
eptional feature: if its size (the number of queens) is in-
reased, it gets easier [36℄. This makes it somewhat uninteresting as the traditional `s
ale-up
ompetition' won't work with it.



CSPs6 whi
h 
reates instan
es for di�erent 
onstraint tightness and density val-ues [7℄. Later on this generator has been adopted and reimplemented by Eibenet al. [13℄.Advises on the 
hoi
e for a 
ompetitor algorithm boil down to the samesuggestion: 
hoose the best one available to represent a real 
hallenge. Im-plementing this prin
iple is, of 
ourse, not always simple. It 
ould be hard to�nd out whi
h spe
i�
 algorithm shows the best performan
e on a given (typeof) problem. This is not only due to the diÆ
ulties of �nding information.Sometimes it is not 
lear whi
h 
riteria to use for basing the 
hoi
e upon.This problem leads us to the third aspe
t of 
omparative experimental re-sear
h: that of the 
omparative measures. The performan
e of a problem solvingalgorithm 
an be measured in di�erent ways. Speed and solution quality arewidely used, and for sto
hasti
 algorithms, as EAs are, the probability of �ndinga solution (of 
ertain quality) is also a 
ommon measure.Speed is often measured in elapsed 
omputer time, CPU time or user time.However, this measure is depending on the spe
i�
 hardware, operating system,
ompiler, network load, et
. and therefore is ill-suited for reprodu
ible resear
h.In other words, repeating the same experiments, possibly elsewhere, may leadto di�erent results. For generate-and-test style algorithms, as EAs are, a 
om-mon way around this problem is to 
ount the number of points visited in thesear
h spa
e. Sin
e EAs immediately evaluate ea
h newly generated 
andidatesolution, this measure is usually expressed as the number of �tness evaluations.For
ed by the sto
hasti
 nature of EAs this is always measured over a number ofindependent runs and the Average number of Evaluations to a Solution (AES)is used. It is important to note that the average is only taken over the su

essfulruns (\to a Solution"), otherwise the a
tually used maximum number of eval-uations would distort the statisti
s. Fair as this measure seems, there are twopossible problems with it. First, it 
ould be misleading if an EA uses `hiddenlabor', for instan
e some heuristi
s in
orporated in the geneti
 operators, in the�tness fun
tion, or in a lo
al sear
h module (like in GLS). The extra 
omputa-tional e�ort due to hidden labor 
an in
rease performan
e, but are invisible tothe AES measure7. Se
ond, it 
an be diÆ
ult to apply AES for 
omparing anEA with sear
h algorithms that do not work in the same sear
h spa
e. An EAis iteratively improving 
omplete 
andidate solutions, so one elementary sear
hstep is the 
reation of one new 
andidate solution. However, a 
onstru
tivesear
h algorithm would work in the spa
e of partial solutions (in
luding the
omplete ones that an EA is sear
hing through) and one elementary sear
h stepis extending the 
urrent solution. Counting the number of elementary sear
hsteps is misleading if the sear
h steps are di�erent. A 
ommon treatment forboth of these problems with AES (hidden labor, di�erent sear
h steps) is to6Binary CSPs (where ea
h 
onstraint 
on
erns exa
tly two variables) form a ni
e problem
lass. While they have a transparent stru
ture it holds that every CSP is equivalent to abinary CSP [47℄.7In the CSP literature the number of 
onstraint 
he
ks is used 
ommonly as speed measure.It seems an interesting option to use this into measure in 
ombination with or as an alternativeto the AES measure in evolutionary 
omputing




ompare s
ale-up behavior of the algorithms. To this end a problem is neededthat is s
alable, that is, its size 
an be 
hanged. The number of variables is anatural s
ale-up parameter for many problems. Two di�erent types of methods
an then be 
ompared by plotting their own speed measure �gures against theproblem size. Even though the measures used in ea
h 
urve are di�erent, thesteepness information is a fair basis for 
omparison: the 
urve that grows at ahigher rate indi
ates an inferior algorithm.Solution quality of approximate algorithms for optimization is most 
om-monly de�ned as the distan
e to an optimum at termination, e.g. jfbest � foptj,where f is the fun
tion to be optimized, fbest is the f value of best 
andidatesolution found in the given run and fopt is the optimal f value. For sto
hasti
algorithms this is averaged over a number of independent runs and in evolu-tionary 
omputing theMean Best Fitness (MBF) is a 
ommonly used name forthis measure. As we have seen in this paper, for 
onstraint satisfa
tion problemsit is not straightforward what f to use { there are more sensible options. For
omparing the solution quality of algorithms this means that there are moresensible quality measures. The problem is then, that most probably one woulduse the fun
tion f that has been used to �nd a solution and this 
an be di�erentfor another algorithm. For instan
e, algorithm A 
ould use the number of un-satis�ed 
onstraints as �tness fun
tion and algorithm B 
ould use the numberof wrong variable instantiations. It is then not 
lear what measure to use for
omparing the two algorithms. Moreover, in 
onstraint satisfa
tion it is oftennot good enough to be 
lose to a solution. A 
andidate is either good (satis�esall 
onstraints) or bad (violates some 
onstraints). In this 
ase, it makes nosense to look at the distan
e to a solution as a quality measure, hen
e the MBFmeasure is not appropriate.The third measure whi
h is often used to judge sto
hasti
 algorithms, andthus EAs, is the probability of �nding a solution (of 
ertain quality). Thisprobability 
an be estimated by performing a number of independent runs underthe same setup on the same type of problems and keep a re
ord on the per
entageof runs that did �nd a solution. This Su

ess Rate (SR) 
ompletes the pi
tureobtained by AES and MBF. Note that SR and MBF are related but do providedi�erent information, and all di�erent 
ombinations of good/bad SR/MBF arepossible. For instan
e, bad (low) SR and good (high) MBF indi
ate a goodapproximator algorithm: it gets 
lose, but misses the last step to hit the solution.Likewise, a good (high) SR and a bad (low) MBF 
ombination is also possible.Su
h a 
ombination shows that the algorithm mostly performs perfe
tly, butsometimes it does a very very bad job.6 Con
lusionThis survey of related work dis
losed how EAs 
an be made su

essful in solvingCSPs. Roughly 
lassifying the options we en
ountered, the key features are theutilization of heuristi
s and/or the adaptation of the �tness fun
tion during arun. Both features are based on the stru
ture of the problems in question, so



in a way the problem of how to treat CSPs 
arries its own solution.In parti
ular, 
onstraints fa
ilitate the use of sub-individual measures toevaluate parts of 
andidate solutions. Su
h sub-individual measures are notpossible for example in a pure fun
tion optimization problem, where only awhole individual 
an be evaluated. These measures lead to heuristi
s that 
anbe in
orporated in pra
ti
ally any 
omponent of an EA, the �tness fun
tion,mutation and re
ombination operators, sele
tion, or used in a repair (or morein general lo
al sear
h) me
hanism.Likewise, it is the presen
e of 
onstraints that leads to a �tness fun
tion
omposed from separate pie
es. This 
omposition or the relative importan
e ofthe 
omponents 
an be 
hanged over time. During the sear
h information is
olle
ted (e.g. on whi
h 
onstraints are hard) and this information 
an be verywell utilized.The �eld of evolutionary 
onstraint satisfa
tion is relatively new. Inten-sive investigations started approximately in the mid nineties, while evolution-ary 
omputing itself has it roots in the sixties. Be
ause of the short history
oheren
e is la
king and the �ndings of individual experimental studies 
annotbe generalized (yet). There are a number of resear
h dire
tions that should bepursued in the future for further development. These in
lude:� Study of the problem area. A lot 
an be learned from the traditional
onstrained literature about su
h problems. Existing knowledge shouldbe imported into 
ore EC resear
h.� Cross-fertilization between the insights 
on
erning EAs for (
ontinuous)COPs and (dis
rete) CSPs. At present, these two sub-areas are pra
ti
allyunrelated.� Sound methodology: how to set up fair experimental resear
h, how toobtain good ben
hmarks, how to 
ompare EAs with other te
hniques.� Theory: better analysis of the spe
i�
 features of 
onstrained problems,and the in
uen
e of these features on EA behavior.Referen
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