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ABSTRACT
In this study we investigate the effect five initialisation meth-
ods from literature have on the performance of the Heuris-
tic Memetic Clustering Algorithm (HMCA). The evaluation
is based on an extensive experimental comparison on three
benchmark datasets between HMCA and the commonly-used
k-Medoids algorithm. Analysis of the experimental effec-
tiveness and efficiency metrics confirms that the HMCA sub-
stantially outperforms k-Medoids, with the HMCA capable
of finding bestter clusterings using substantially less compu-
tation effort. The Sample and Cluster initialisation methods
were found to be the most suitable for the HMCA, with the re-
sults of the k-Medoids suggesting this to be the case for other
algorithms as well.

Index Terms— Machine Learning, Memetic Algorithms,
Clustering, Heuristics

1. INTRODUCTION

Clustering is a data and signal processing task with the objec-
tive to determine a finite set of categories, called clusters, to
describe a dataset according to the similarities among its data
objects [1, 2]. Applications of clustering are many and range
from market segmentation [3] and image processing [4], to
document categorisation and web mining [5]. Recently clus-
tering has gained prominence for signal processing in the field
of bioinformatics [6–9].

Clustering can then be defined as follows. A dataset, X,
has N data objects: X = {x1, . . . ,xN}, with each data ob-
ject, x, having n features or attributes: x = {x1, . . . , xn}.
A configuration of clusters, or clustering, C, has k clusters:
C = {c1, . . . ck}, with each cluster, c, a subset of data ob-
jects from the dataset: c = {x1, . . . ,x|c|}, with xi ∈ X.
Clusters are not allowed to be empty, ci 6= ∅, or overlap,
c1 ∪ c2 ∪ . . . ∪ ck = X and ci ∩ cj 6= ∅ for i 6= j.

Clustering algorithms seek to assign all data objects of
a dataset to clusters and, from an optimisation perspective,
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strive to maximise the homogeneity of data objects within a
cluster, while simultaneously maximising the heterogeneity
between clusters [4,10]. Measuring similarity (homogeneity)
is tackled indirectly by using a distance measure quantifying
the degree of dissimilarity (heterogeneity) between data ob-
jects. Usually distance measures are defined so that similar
data objects have lower dissimilarity values, while dissimilar
objects have higher values [4, 10].

In Machine Learning, clustering is deemed to be one of
the most difficult and challenging problems, mostly due to its
unsupervised nature, and the implication that the structural
characteristics of the dataset remain unknown [11]. Cluster-
ing is formally considered a particular kind of NP-hard group-
ing problem [12]. This has stimulated the search for efficient
approximation algorithms, especially, for more general meta-
heuristics like Evolutionary Algorithms (EAs), and Meme-
tic Algorithms (MAs), capable of evolving near-optimal solu-
tions in reasonable time. Many clustering EAs and MAs have
been proposed in literature (see [13]).

This study investigates the effect five initialisation meth-
ods from literate have on the performance of the Heuristic
Memetic Clustering Algorithm (HMCA), as well as the rela-
tive effect this has when compared with the k-Medoids. In
[14] we designed the HMCA as an easy-to-understand yet
powerful clustering algorithm, adaptable for a wide variety of
clustering problems and dataset. The basis for this adaptabil-
ity lies in its single local-search operator, incorporated into
the MA meta-heuristic. By applying this operator with dif-
ferent heuristics, the HMCA can be tailored to a wide va-
riety of clustering problems and datasets. In [14], the per-
formance of the HMCA was compared with the commonly
used k-Medoids algorithm on three benchmark datasets. The
HMCA was found to be substantially more effective in find-
ing good clusterings, and efficient in being able to do so using
fewer computational resources.

For all its demonstrated effectiveness and efficiency in
clustering datasets, further analysis of the experimental re-
sults showed that HMCA’s initial clusterings were often of
substantially worse quality than those available to k-Medoids.
Subsequently the HMCA had to expend significant computa-
tional effort catching up. The HMCA being stochastic, its
ability to invariably do so accentuates its power and perfor-



mance. But it also lead to the question we seek to answer
in this study: can the performance of the HMCA be further
improved by using other, more suited, initialisation methods?

To answer this research question, we present five com-
monly used initialisation methods from literature [15] and
apply these initialisation methods to both the HMCA and k-
Medoids, allowing a fair comparison between the two. We
then use an experimental layout similar to the one used in [14]
to compare the efficiency and effectiveness of both algorithms
on three datasets, varying the initialisation methods for both.

The remainder of this study is then organised as follows.
Section 2 provides a summary description of the HMCA. In
Section 3 we describe the initialisation methods. Section 4
the describes the experimental setup, while Section 5 presents
the experimental results. Finally, Section 6 provides some
discussion and a conclusion.

2. ALGORITHM

The HMCA was first presented in [14] and we refer to that
publication for a detailed description of the algorithm. Be-
cause of the limited space available, we provide only a sum-
mary description of the HMCA, sufficient for understanding
the issues raised here.

The HMCA is a MA for clustering datasets. MAs are
a subset of EAs, in that they resemble EAs but include a
local-search component. MAs are sometimes referred to as
Baldwinian EAs, Lamarckian EAs, Cultural Algorithms, or
Genetic Local-Search Algorithms [16]. The HMCA’s local-
search component is a single local-search operator using
heuristics to guide the evolutionary process towards better
clusterings.

The HMCA evolutionary process closely follows the
canonical EA process: Clusterings are encoded in individ-
uals, and an initial population of individuals is initialised
using an initialisation method. Each individual has a value
quantifying its quality or fitness, assigned by the fitness func-
tion. The HMCA fitness function calculates the cumulative
inner-distance of a clustering:

f(C) =
∑
ci∈C

|ci|−1∑
l=1

|ci|∑
m=l+1

d(xl, xm) (1)

with d(xl, xm) the Euclidean distance between data object
xl and xm as a distance metric. The fitness value is to be
minimised, i.e., good clusterings have tight clusters.

The HMCA then iteratively approximates towards global
optimal clusterings by applying a single local-search opera-
tor to each individual in the (parent) population. This opera-
tor generates one child individual for each parent individual
by reassigning one data object from one cluster to another.
Empty clusters are avoided, but when they occur are repaired
by moving a random data object from the biggest cluster to the

empty cluster (iteratively if there is more than one empty clus-
ter). The (repaired) offspring individuals are then assigned a
fitness value, and placed in the offspring population. Both
parent and offspring populations are merged and duplicate
clusterings (based on cluster content) are discarded. Sorted
by fitness values, the merged population is pruned to a size
equal to the population size parameter by discarding the worst
individuals, thus creating the parent population for the next it-
eration of the HMCA.

The iterative process is halted when the HMCA has ex-
hausted a set maximum number of distance calculations. Dis-
tance calculations are used by the fitness function, but also by
the local-search operator, and by the initialisation method.

The innovative feature of the HMCA is its heuristic local-
search operator. It uses up to three heuristics to select a data
object, and then to select a cluster to subsequently assign it
to. Selecting the data object may involve two heuristics: one
to first select a cluster, from which another then selects a data
object, or, alternatively, just one selecting a data object from
all data objects in the clustering without regard to which clus-
ter it is assigned. The three heuristic types are then: one for
selecting a (source) cluster, one for selecting a data object,
and one for selecting label (or destination cluster).

All three heuristic types have a benchmark or reference
heuristic, called a null-heuristic. These are, respectively: se-
lect no cluster (data objects are selected from all available),
select a random data object, and select a random label. Four
heuristics are defined for both the cluster and data object
heuristic types, while six are defined for the label heuristic
type. These heuristics are defined around distance metrics,
and use distance calculations, with selection either determin-
istic or proportionally random. We refer to [14] for precise
definitions of all heuristics. Including the null-heuristics, the
HMCA uses a total of five cluster and data object heuristics,
and seven label heuristics.

The HMCA then has the following input parameters: a
dataset to cluster, the number of clusters to cluster it in, the
size of the population to use, the maximum number of dis-
tance calculations, and the three heuristics used by the local-
search operator. A HMCA variant for a dataset is be de-
fined by the three heuristics used by the local-search opera-
tor. Some HMCA variants are expected to have superior per-
formance than others, and differing performance for different
datasets.

3. INITIALISATION METHODS

Originally, in [14], the HMCA used a two-step approach
for initialising individuals: first, all clusters were assigned a
unique, randomly chosen data object; then all remaining data
objects were assigned to random clusters. This initialisation
methods avoids initial individuals having empty clusters, but
the random assignment of the remaining data objects is also
likely to result in unfavourable initial partitions. Mostly be-



cause the resulting clusters are likely to be mixed up to an
unfavourably high degree.

The likelihood of producing unfavourably, mixed-up ini-
tial clusters was already mentioned in [13], which then goes
on to state that this does constitute an effective approach for
testing algorithms against hard evaluation scenarios. The au-
thors agree, but this seems rather of limited interest to those
simply wishing to evolve good quality clusterings. Further-
more, This drawback makes for rather unfair comparisons be-
tween EAs (and MAs) and other algorithm types who need
not suffer from this. So, while it is comforting to the find that
the HMCA was still capable of comparatively superior per-
formance in [14], in this study, similar to [15], we investigate
the (comparative) performance of the HMCA when the origi-
nal initialisation method is replaced with one of the following
five methods:
Sample Like the original initialisation method, Sample first

assigns each cluster a unique randomly selected data ob-
ject as a medoid, but then assigns the remaining data ob-
jects to the cluster with the least distance between itself
and the medoid.

Cluster This initialisation method takes a 10% randomly se-
lected sample of all data objects, and then uses a single
iteration of k-Medoids to find k medoids among them.
These are assigned to each cluster, with the remaining
data objects assigned as with Sample.

Uniform This method calculates the value ranges of each
attribute by taking the minimum and maximum values
for each attribute for each data object in the dataset. k
new data objects are then generated by taking a random
value from a uniform random distribution between these
ranges for each attribute. These new data objects are then
matched to data objects in the dataset by selecting the one
closest to it, and used as medoids for each cluster. The
remaining data objects are assigned as with Sample.

KA0 and KA1 These two initialisation methods are based on
the Kaufman Approach (KA) [1]. A deterministic con-
structive approach, this initialisation method essentially
compares the pair-wise distance between all data objects,
subtracting from it the minimum distance to the data ob-
ject and already selected medoids. Using this measure,
the KA iteratively selects k medoids that maximise the
heterogeneity in the dataset’s hyperplane. The difference
between KA0 and KA1 reflects an interpretation difference
in the description in [1]. KA0 uses accumulative distances
between data objects, while KA1 uses single distances.
The remaining data objects are assigned as with Sample.

4. EXPERIMENTAL SETUP

The experimental setup used here is similar to the one used
in [14]. The initialisation methods described in Section 3
were implemented for use in both the HMCA and k-Medoids.
The k-Medoids algorithm was further adapted to use the same

performance measures as the HMCA, making a direct com-
parison both possible and fair.

Both the effectiveness and efficiency of both algorithms
are measured. Effectiveness is an expression of the ability
of the algorithms to find (evolve) good quality clusterings of
the dataset. Clustering quality in the HMCA is assessed by
the fitness value, i.e., the cumulative inner-cluster distance.
The same measure is used by k-Medoids, but, since maintain-
ing fitness values is not integral to k-Medoids, the distance
calculations required for calculating it are not included when
measuring efficiency.

Efficiency is an expression of the amount of computa-
tional effort required by the algorithm to find good cluster-
ings. Since the commonly used wallclock time to solution
metric is affected by range of unquantifiable factors (such as
computing platform, implementation quality, etc.), as in [14],
we use the number of distance calculations as the atomic effi-
ciency measure instead.

As in [14], we use three commonly-used datasets to evalu-
ate the performance of both algorithms: the Iris flower dataset
(Iris), the Glass Identification dataset (Glass), and a gener-
ated Quadrature Amplitude Modulation dataset (16-QAM).
The Iris dataset is a collected multivariate dataset of three
(k = 3) Iris flowers for a total of N = 150 data objects with
n = 4 measured features (attributes) each [17]. The Glass
dataset is a multivariate dataset consisting of n = 9 collected
chemical compositions of glass, for a total of N = 217 data
objects, clustered into k = 6 clusters of variable size [18].
The 16-QAM dataset is a generated dataset consisting of a
N = 1024 data object signal stream, modulated randomly on
a 4 × 4 = 16 two dimensional rectangular grid (k = 16),
giving each data object n = 2 features (coordinates). Af-
ter generation of the signal stream, 12 dB of Gaussian noise
was added. With different numbers of clusters to be found,
with different degrees of overlap between those clusters, and
varying numbers of data objects and features, we believe that
together these datasets provide a diverse environment to eval-
uate and compare both algorithms on.

Parameters for the algorithms then include: the number
of clusters (k = 3 for Iris, k = 6 for Glass, and k = 16 for
16-QAM), population size (for HMCA: {1, 2, 5, 10 }), and
all combinations of the heuristics for HMCA (5 · 5 · 7 = 175
HMCA variants). Both algorithms are stochastic, and were
repeatedly run 25 times to gain sufficient statistical accuracy.
They were both given 10, 000, 000 distance calculations to
cluster the Iris and Glass datasets, and 20, 000, 000 distance
calculations for the 16-QAM dataset. Preliminary experimen-
tation showed that these values allowed both algorithms suf-
ficient computational effort for a fair comparison.

5. RESULTS

Both the effectiveness and efficiency of both algorithms can
be assessed by examining the fitness value per distance cal-
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Fig. 1. Experimental results of both HMCA and k-Medoids, for datasets Iris (a), Glass (b), and 16-QAM (c).

culations graph. Effectiveness can be compared by looking
at the eventual fitness value of the found clusterings, while
efficiency can be assessed by looking at the behaviour of the
fitness values during the run. The results of the experiments
are show in Figure 1, which includes a graph for each of the
three dataset (Iris (a), Glass (b), and 16-QAM (c)). Each
graph includes a curve for both algorithms, for each initial-
isation method, for a total of ten curves (except 16-QAM, see
below). The curves for the HMCA results are depicted us-
ing solid lines, while dotted lines were used for k-Medoid’s
results. The horizontal and vertical axis measure the num-
ber of distance calculations and the best fitness value, respec-
tively. Each curve represents the best performance behaviour
out of 25 runs, with the HMCA results represented by com-
pound curves over all HMCA variants (see [14]). Each sub-
figure includes an inset graph focusing on early performance
behaviour for the Iris and Glass datasets, and the Uniform re-
sults for the 16-QAM dataset (see below).

Subfigure (a) shows both algorithms capable of quickly
finding a local optimal clustering for the Iris dataset, with sim-
ilar eventual effectiveness. The HMCA, however, shows su-
perior efficiency, descending towards the local optimal clus-
tering faster, often substantially so. The inset shows that the
Sample and Cluster initialisation methods proved to be the
most suited for the HMCA, with both curves almost on top
of each other, and little further improvement (needed) after
initialisation. The KA0 initialisation method had the best per-
formance for k-Medoids, although the difference is relatively
small.

A substantial effectiveness difference between the HMCA
and k-Medoids was found for the Glass dataset, with the
HMCA consistently finding better clusterings, for all five
initialisation methods. The HMCA was also substantially
more efficient than k-Medoids, with subfigure (b) indicating
that the HMCA never needs more that three million distance
calculations to find a good clustering, with k-Medoids in-
capable to do so even when using all ten million distance
calculations available. In the inset we found, again, that the
Sample and Cluster initialisation methods gave the HMCA
the best performance, with the Sample method providing the

best performance for k-Medoids.
There are only six curves out of ten in subfigure (c), with

the KA0 and KA1 curves not depicted. This is because both
KA0 and KA1 are expensive initialisation methods, and be-
come exponentially so as the number of data objects and the
number of clusters in the dataset increases. For the 16-QAM
dataset, both initialisation methods use so many distance cal-
culations that they used up more distance calculations than
the maximum available.

The remaining curves in subfigure (c) show similar perfor-
mance behaviour for the 16-QAM dataset for both algorithms,
to what was seen in subfigure (b). We find k-Medoids stuck in
a worse local optimal clustering, with a substantial efficiency
difference between the two algorithm as well. The HMCA
outperforms k-Medoids substantially for both the Sample and
Cluster initialisation methods, with these initialisation meth-
ods providing the best performance for both algorithms.

The exception in subfigure (c) is the HMCA performance
when using the Uniform initialisation method, shown in the
inset. The poor performance of this method is caused by the
way this method randomly selects medoid coordinates in the
16-QAM two-dimensional feature space. The generation and
selection procedure ignores the underlying structure of the
generated signal, requiring the HMCA to later expend dis-
tance calculations catching up. The other two initialisation
methods do not suffer from this, and neither does k-Medoids.
These results illustrate how an initialisation method acting
counter to the underlying structure of the dataset can lead to
significantly worse performance.

6. DISCUSSION & CONCLUSION

In this study we investigated the effect five initialisation meth-
ods from literature have on the performance of the HMCA
and k-Medoids. The five initialisation methods are defined,
implemented, and applied to both the HMCA and k-Medoids,
the latter extended to make the comparison fair. The compari-
son evaluates both algorithms on both effectiveness (ability to
find good clusterings) and effectiveness (ability to find them
fast).



An analysis of the experimental results leads us to con-
clude that the HMCA has superior performance, both in ef-
fectiveness and efficiency, over k-Medoids. Particularly the
Sample and Cluster initialisation methods were found to have
superior performance, on all three datasets. Using these ini-
tialisation methods the HMCA was capable of consistently
finding global optimal clusterings, while using substantially
less computational effort to do so.

The performance of the KA0 and KA1 initialisation meth-
ods were particularly disappointing, for both algorithms.
These initialisation methods are often used because they are
deterministic, limiting stochasticity in the experimental pro-
cess. However, both methods are also expensive, and become
exponentially so as the number of data objects in the dataset
increase. We found that this became a prohibitive factor for
the 16-QAM dataset, and moreover found that the increased
computational effort did not lead to a subsequent performance
increase for both algorithms.

When computation effort available is limited (as it almost
always is), additional effort spend on initialisation reduces the
amount available for evolving the generated clusterings. This
must therefore be offset by the quality of the generated clus-
terings. Our findings show this did not work for the KA0 and
KA1, and, to a lesser extend, for the Uniform initialisation
methods. In contrast, the Sample and Cluster initialisation
methods did get this balance right for the HMCA, and, given
their superior performance with k-Medoids as well, we expect
that this will be the case for other algorithms as well.

Limited available space has lead us to, thus far, neglect
one questions: which HMCA variants have the best perfor-
mance for which dataset. A succinct answer would go as fol-
lows: the curves shown in Figure 1 for the HMCA are com-
pound curves, showing the performance of all 175 HMCA
variants merged into one curve. In [14] we found that the
best performing HMCA variants were those that were relaxed
(more random) about cluster and data object selection, but
specific (deterministic) about label selection. Analysis of the
results for this study did not alter that conclusion, i.e., similar
HMCA variants had the best performance in [14], as well as
here.

REFERENCES

[1] L. Kaufman and P.J. Rousseeuw, Finding Groups in
Data – An Introduction to Cluster Analysis, Wiley,
Canada, 1990.

[2] B.S. Everitt, S. Landau, and M. Leese, Cluster Analysis,
Arnold Publishers, 2001.

[3] J.P. Bigus, Datamining with Neural Networks: solving
business problems–from application development to de-
cision support, McGraw-Hill, 1996.

[4] A.K. Jain and R.C. Dubes, Algorithms for Clustering
Data, Prentice Hall, 1988.

[5] G. Mecca, S. Raunich, and A. Pappalardo, “A new al-
gorithm for clustering search results,” Data and Knowl-
edge Engineering, vol. 62, pp. 504–522, 2007.

[6] P. Baldi and S. Brunak, Bioinformatics – The Machine
Learning Approach, MIT Press, 2nd ed. edition, 2001.

[7] P.M. Bertone-Gerstein, “Integrative data mining: The
new direction in bioinformatics – machine learning for
analyzing genome-wide expression profiles,” IEEE En-
gineering in Medicine and Biology, vol. 20, pp. 33–40,
2001.

[8] F. Valafar, “Pattern recognition techniques in microar-
ray data analysis: A survey,” Annals of New York
Academy of Sciences, vol. 980, pp. 41–64, 2002.

[9] Basel Abu-Jamous, Rui Fa, David J. Roberts, and
Asoke K. Nandi, “Paradigm of tunable clustering using
binarization of consensus partition matrices (bi-copam)
for gene discovery,” PLoS ONE, vol. 8, no. 2, 2013.

[10] L.J. Arabie, G. Hubert, and P. DeSoete, Clustering and
Classification, World Scientific, 1999.

[11] C. Fralley and A.E. Raftery, “How many clusters?
which clustering method? answer via model-based
cluster analysis,” The Computer Journal, vol. 41, pp.
578–588, 1998.

[12] E. Falkenauer, Genetic Algorithms and Grouping Prob-
lems, John Wiley & Sons, 1998.

[13] E.R. Hruschka, R.J.G.B. Campello, A.A. Freitas, and
A.C.P.L.F. de Carvalho, “A survey of evolutionary al-
gorithms for clustering,” IEEE Trans. on Systems, Man,
and Cybernetics – Part C: Applications and Reviews,
vol. 39, no. 2, pp. 133–155, 2009.

[14] B.G.W. Craenen, A.K. Nandi, and T. Ristaniemi, “A
novel heuristic memetic clustering algorithm,” in IEEE
International Workshop on Machine Learning for Sig-
nal Processing, Southampton, UK, Sept 22–25 2013.
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