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Abstract. This paper introduces a hybrid Tabu Search - Evolutionary
Algorithm for solving the binary constraint satisfaction problem, called
CTLEA. A continuation of an earlier introduced algorithm, called the
STLEA, the CTLEA replaces the earlier compound label tabu list with
a conflict tabu list. Extensive experimental fine-tuning of parameters
was performed to optimise the performance of the algorithm on a com-
monly used test-set. Compared to the performance of the earlier STLEA,
and benchmark algorithms, the CTLEA outperforms the former, and ap-
proaches the later.

1 Introduction

Solving constraint satisfaction problems (CSP) with evolutionary algorithms
(EAs) has been studied extensively over the years. This has resulted in the
introduction of a large number of algorithms. A study of the performance of a
representative sample of EAs, using a large randomly generated test-set, was
carried out in [1]. A more comprehensive study, using an updated test-set, also
including a large number of algorithm variants, can be found in [2]. There, it
was found that one algorithm variant, the Stepwise-Adaptation-of-Weights EA
with randomly initialised domain sets (rSAWEA), outperformed all other EAs.
However, when comparing the effectiveness and efficiency of this algorithm with
non-evolutionary algorithms, it was found that although the former could be
approximated, the algorithm still fell short of achieving the later.

A reason for this lack of efficiency was identified to be the lack of preventing
EAs from traversing already studied search-paths, something non-evolutionary
algorithms are usually prevented from doing. In [3] therefore, the Simple Tabu
List Evolutionary Algorithm (STLEA) was introduced, using a tabu list pre-
venting it from wasting computational effort on already traversed search-paths.
Tabu lists are a part of the Tabu Search (TS) meta-heuristic ([4]). They are used
to ensure that an algorithm does not return to an already searched neighbour-
hood by making it tabu. The Tabu Search meta-heuristic has found its way into
EAs before (e.g. [5,6,7,8]), especially for EAs handling constrained problems.
An important feature of tabu lists is that they are only referenced, i.e., only
insertion and look-up of elements is used. As such, they can be implemented as
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a hash-set, ensuring constant time cost when a suitable hash function is chosen.
In [3] it was found that the STLEA, with a tabu list containing candidate solu-
tions, increased efficiency enough to surpass the rSAWEA, with equal or better
effectiveness. However, while comparing the performance of the STLEA to that
of non-deterministic algorithms, it was still found to have equal effectiveness but
inferior efficiency. Although, in [3], an important step was made in the right
direction, it was still not good enough to beat deterministic algorithms.

This paper endeavours to set the next step by refining the tabu list used in
the algorithm. Instead of focussing on candidate solutions for the tabu list, it
focusses on storing conflicts instead. There are two advantages to this approach.

First, the number of conflicts in a CSP-instance is smaller than the number of
possible candidate solutions, making the tabu list itself much easier to handle.
This makes the tabu list approach more viable for large CSP-instances as well.

Second, a conflict tabu list can be used more directly to guide the search-path,
than a candidate solution tabu list can. Whereas a candidate solution tabu list
is only useful to exclude generated candidate solutions (individuals), the conflict
tabu list can be used directly, for example by the crossover or mutation operator.
This change of focus for the tabu list results in the introduction of the Conflict
Tabu List Evolutionary Algorithm (CTLEA).

The paper is organised as follows: in section 2, a definition of constraint sat-
isfaction problems is given. Section 3 defines the proposed algorithm. The ex-
perimental setup is explained in section 4. Section 5 discusses the results of the
experiments, and finally in section 6, the conclusions that can be drawn from
this paper are set forth.

2 Constraint Satisfaction Problems

The Constraint Satisfaction Problem (CSP) is a well-known NP-complete sat-
isfiability problem ([9]). Defined informally as a set variables X and a set of
constraints C between these variables, it only allows variables to be assigned
values from their respective domains, denoted as Dx, x ∈ X . A label is then a
variable-value pair, denoted: 〈x, d〉, x ∈ X, d ∈ Dx, and assigning a value to a
variable is called labelling it. A compound label is a simultaneous assignment
of several values to their respective variables, and a constraint is then a set of
compound labels, with each compound label determining when the constraint is
violated. A compound label not in a constraint is said to satisfy that constraint,
while one that is, is called a conflict. A solution of a CSP is then defined as a
compound label that contains all variables, but no conflicts from any constraint.

The number of distinct variables in the compound labels of a constraint is
called the arity of that constraint, and these variables are said to be relevant to
this constraint. The maximum arity of all constraints in a CSP is the arity of
the CSP itself. In this paper, we only consider CSPs with an arity of two, mean-
ing that all constraints in the CSP have arity two as well. Such CSPs are called
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binary CSPs. Restricting the arity of the studied CSPs is not a restriction in
itself though, as [10] shows that every CSP can be transformed into an equivalent
binary CSP.

This paper will use the same test-set constructed in [2], and [3]. It consists of
model F generated solvable CSP-instances ([11]) with 10 variables and a uniform
domain size of 10 values. Complexity of these instances is determined by using
two complexity measures for the CSP: density (p1) and average tightness (p2),
both presented as a real number between 0.0 and 1.0 inclusive. Density is the
ratio between the maximum number of constraints of a CSP (

(|X|
2

)
for a binary

CSP) and the actual number of constraints (|C|). The tightness of a constraint
is defined as one minus the ratio between the maximum number of possible
conflicts (|Dx1 × Dx2 | for a binary constraint relevant to variables x1 and x2)
and the number of conflicts. The average tightness of a CSP is then the average
tightness of all constraints in the CSP.

In the density-tightness parameter space of all randomly generated CSP-
instances, the hard-to-solve instances can be found in what is called the mushy
region. For the test-set used, the following density-tightness combinations lie
within the mushy region 1 : (0.1, 0.9), 2 : (0.2, 0.9), 3 : (0.3, 0.8), 4 : (0.4, 0.7),
5 : (0.5, 0.7), 6 : (0.6, 0.6), 7 : (0.7, 0.5), 8 : (0.8, 0.5), and 9 : (0.9, 0.4). For each of
these density-tightness combinations, 25 CSP-instances were selected from a pop-
ulation of 1000 randomly generated CSP-instances (see [2] for selection criteria).
In total, the test-set includes 9·25 = 225 CSP-instances. The test-set can be down-
loaded at: http://www.emergentcomputing.org/csp/testset mushy.zip.

3 The Algorithm

The Conflict Tabu List Evolutionary Algorithm (CTLEA) is an evolutionary
algorithm using the Tabu Search meta-heuristic. In keeping with the simple def-
inition of Tabu Search as “a meta-heuristic superimposed on another heuristic”
([4]), the CTLEA uses only the tabu list. In the STLEA, as described in [3], the
tabu list was used to ensure that a compound label was not checked twice during
a run. A major criticism of this type of tabu list is that the number of possible
compound labels (candidate solutions), and therefore the amount of memory
needed to maintain it, could become quite large, depending mostly on CSP pa-
rameters. The CTLEA therefore focusses on conflicts, and uses the tabu list to
ensure that a conflict is not rechecked during a run. There are two advantages
from using tabu lists in this way. First, the number of conflicts of a CSP-instance
is smaller than the number of possible candidate solutions, addressing the crit-
icism above. This not only makes the tabu list easier to maintain, but allows
for the use of the tabu list for large CSP-instances as well. Second, a tabu list
focussing on conflicts can be used by the algorithm to guide the search-path
directly. Whereas a candidate solution tabu list is only useful to exclude whole
candidate solutions (individuals), a conflict tabu list can be used by, for exam-
ple, the crossover and mutation operators of the EA, to determine directly which
variables and values can be labelled.

http://www.emergentcomputing.org/csp/testset_mushy.zip
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An example may provide more insight into the difference of size and subse-
quent cost of maintenance between a compound label and conflict tabu list. Let
us consider the worst-case scenario for both tabu lists. The test-set used has
10 variables, and a uniform domain size of 10 elements. If the compound label
tabu list were used, this means that in the worst-case, it should be able to store
1010 = 100, 000, 000, 000 compound labels, i.e., all possible candidate solutions.
On the other hand, if the conflict tabu list were used, again in the worst-case, it
should be able to store

(10
2

)
× 10 × 10 = 45 × 10 × 10 = 4500 conflicts, i.e., all

possible conflicts. This difference increases with scale as well. It must be noted
however, that on average, only a fraction of the compound labels was stored by
the STLEA in [3], although still substantially more than the number of conflicts
stored by the CTLEA.

The basic structure of the CTLEA, shown in algorithm 1, was kept purposely
close to that of the canonical EA. The biggest difference is that the CTLEA uses
a single variance operator, called move-operator, instead of a separate crossover-
and mutation operator.

The CTLEA works as follows. A population P of popsize individuals is ini-
tialised (line 2) and evaluated (line 3). The representation used by the individual,
and initialisation is described in 3.1, the objective function used to evaluate them
is described in section 3.2. The CTLEA then enters a while-loop wherein it it-
erates for a number of generations (line 4 to 9) until either a solution is found,
or the maximum number of conflict checks allowed (maxCC) has been reached
or exceeded (the stop condition in line 4). At the beginning of each iteration
of the algorithm, parents are selected from P into population S using biased
linear ranking selection ([12]) with bias bias (line 5). These parents are used by
the move-operator to create a new offspring population (line 6), as described
in section 3.4. The new offspring population is then evaluated by the objective
function (line 7). Finally, at the end of each iteration, the survivor selection oper-
ator selects individuals from the offspring population (S) into a new population
(P ) to be used for the next iteration/generation (line 8). No ’elitism’ is used
by the CTLEA, i.e., no individuals from the previous iteration/generation are
forcefully preserved for the next iteration/generation. The tabu list, described
in section 3.3, is used by both the objective function and the move-operator.

Algorithm 1: CTLEA

1 funct CTLEA(popsize, maxCC, bias) ≡
2 P := initialise(popsize);
3 evaluate(P );
4 while ¬solutionFound(P ) ∨ CC < maxCC do
5 S := selectParents(P, bias);
6 S := moveOperator(S);
7 evaluate(S);
8 P := selectSurvivors(S);
9 od
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3.1 Representation and Initialisation

A CTLEA individual consists of three parts: a compound label over all variables
of the CSP used as a candidate solution; a subset of the constraints defined by
the CSP, all violated by the candidate solution; and a field indicating which
variable was altered previously, called the changed variable field. The variable
stored by the changed variable field is called the changed variable.

A new individual is initialised by: labelling all variables in the compound label
uniform randomly from the respective domains of each variable; initialising the
subset of violated constraints to be empty (later to be used by the objective
function); and setting the changed variable field to unassigned (later to be used
by the move-operator).

Like the representation used in the STLEA in [3], the actual set of violated
constraints is used, instead of the derivative number of violated constraints com-
monly used. This reduces the number of conflict checks needed by the objective
function to determine the fitness of the individual. In exchange for this, more
care has to be taken while maintaining this set during the run. Note that in-
stead of actually storing the constraint itself, the index of the constraint in the
set of constraints from the CSP is used. This index can be used to easily retrieve
the actual constraint, reducing the memory needed were it to be stored in the
individual itself.

The changed variable field is used by the objective function and set by the
move-operator to quickly identify which variable has been changed, and conse-
quently which relevant constraints need to be checked. Although limited here to
a single variable, this mechanism can be extended in case more than one variable
can be changed, although this is not necessary for the CTLEA.

3.2 Objective Function

The objective of the CTLEA is to minimise the number of violated constraints.
A solution is found when a candidate solution violates no constraints. The ob-
jective function in the CTLEA then maintains the set of violated constraints of
an individual. The number of conflict checks necessary for one fitness evaluation
is reduced by only considering constraints relevant to the variable stored in the
changed variable field. First, the constraints relevant to the changed variable
are removed from the set of constraints stored by the individual. Then, all con-
straints in the CSP relevant to the changed variable are checked, and if violated
by the candidate solution, added to the set of constraints stored by the individ-
ual. Eventually, the set of constraints stored by the individual will contain all
constraints violated by the candidate solution stored by the individual.

For newly initialised individuals, all constraints are checked, and if violated by
the candidate solution, added to the set of constraints stored by the individual.

The objective function of the CTLEA uses the tabu list by first checking if
a conflict is in the tabu list before performing the conflict check on the CSP-
instance. If the conflict is found to exist in the CSP-instance, it is added to the
tabu list.
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3.3 Conflict Tabu List

The CTLEA maintains a tabu list of conflicts implemented as a hash set, indexed
over the constraint they are in. All conflicts found during the run of the CTLEA
are added to the conflict tabu list. Only conflicts not already in the the tabu list
are added, the list does not contain double entries.

The tabu list is used in only two ways, adding a conflict (insertion), and
checking if a conflict is in the tabu list (look-up). Since there is no need to alter
or remove a conflict once it has been added, both insertion and look-up can be
done in constant time (O(1)) depending on the quality of the hash-function, and
given adequate size of the hash table.

3.4 Move-Operator

The move-operator of the CTLEA takes a single individual (parent) to produce
a single child (offspring). The basic premise of the move-operator is simple: select
a variable to change, and change it in such a way that a child with fewer violated
constraints is created. As such, there are two choices to be made: which variable
to change; and what value to change the variable to.

The move-operator selects which variable to change by selecting one uniform
randomly from a multi-set of variables created in the following way. First, all
variables relevant to constraints in the set of constraints stored by the individual
are added. Then, all variables transitively dependent to the variables already in
the multi-set are added. A variable is transitive dependent to another variable,
if it is relevant to a constraint which the other variable is relevant to. Take,
for example, constraint c1, with its two relevant variables x1 and x2. If there is
another constraint c2, with relevant variables x1 and x3, then x3 is transitive
dependent to x1 and c1. A multi-set is used so that variables that are relevant
or transitive dependent to more than one constraint in the set stored by the
individual have a higher probability of being selected.

Value selection follows the same idea as variable selection, in that a value is
uniform randomly chosen from a set of values. The set of values is created by
checking for each value in the domain if it violates a relevant constraint. If it
does not, it is added to the set.

The move-operator uses the tabu list by first checking the tabu list if a value is
tabu, before checking the CSP-instance. If a value violates a relevant constraint,
the conflict is added to the tabu list as well. A simple example of this use of the
tabu list goes as follows. Supposed variable x1 is selected for change. A random
value for x1 is now chosen from the set of values V1, say v3. The tabu list is now
used to check if this value is in the tabu list. Since the tabu-list stored value-
pairs, all variables relevant through a constraint have are now selected. Say, only
variable x5 is relevant to x1, and in the current individual it has value v7. The
tabu list is now checked for the occurance of value pair: (〈x1, v3〉, 〈v5, v7〉). If
the value pair is on the tabu list, another value is selected for v1, if not the
move-operator ends. If in the object operator the tried value pair turns out to
be a conflict, it is added to the tabu list.
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The move-operator iteratively selects different variables and tries to select
values to them. No variable is selected twice, and a new variable is selected
only when no value can be found that does not violate its relevant constraints.
Selecting a variable twice is prevented by not adding a variable to the variable
multi-set if it has been selected earlier.

It is possible that all variables relevant, or transitively dependent have been
selected by the move-operator already. At this point, the remaining variables
are selected uniform randomly. If all possible variables have been selected, a new
individual is initialised and inserted in the offspring population. At this point,
the move-operator acts as a gradual restart strategy, by starting a new, randomly
chosen, search-path for the CTLEA to explore.

4 Experimental Setup

The test-set introduced in [2] was used for experimentation with CTLEA (see
section 2). Success rate (SR), and the average number of conflict checks to so-
lution (ACCS ), are used to measure the performance of the algorithm.

The SR measure is used to measure the effectiveness of an algorithm, and is
calculated by dividing the number of successful runs performed by the algorithm
by the total number of runs performed. A successful run is a run in which the
algorithm solves the CSP-instance. Usually given as a real number between 0.0
and 1.0, the SR can also be expressed as a percentage. A SR of 1.0 or 100%,
or perfect SR, means all runs solved their CSP-instance. Since the algorithm’s
primary task is to solve CSP-instances, the SR is perceived as the most important
performance measure to compare algorithms on. Accuracy of the SR measure is
affected by the total number of runs.

The ACCS measure is used to measure the efficiency of our algorithm, and
is calculated by averaging the number of conflict checks needed by an algorithm
over several successful runs. A conflict check is defined as the check made to see
if a conflict is in a constraint. Note that the ACCS measure includes all conflict
checks made by the algorithm, in the case of the CTLEA, this does also include
those made in the move-operator. Conflict checks made during unsuccessful runs
of an algorithm are discarded, and if all considered runs of an algorithm are
unsuccessful, the ACCS measure is undefined. Used as a secondary performance
measure for comparing algorithms, the accuracy is ACCS affected by the number
of successful runs and the total number of runs of an algorithm (the ratio of which
is the SR measure), i.e., ACCS is more accurate when SR is higher.

Efficiency performance measures have to take into account the computation
effort expended by an algorithm. The ACCS uses the number of conflict checks
as the atomic measure to quantify the expended computational effort however.
The CTLEA also expends computational effort on maintaining the tabu list
(see section 3). While comparing the effort spent on performing conflict checks
and maintaining the tabu list, it was found that the latter was negligible in
comparison to the former when the CSP-instance was sufficiently hard to solve.
Given that the CSP-instances used in the test-set are all taken from the mushy
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region in the density-tightness parameter space (see section 2), complexity of
the CSP-instances is sufficient to regard the computation effort of maintaining
the tabu list as negligible compared to that of performing the conflict checks.

The CTLEA is blessed with relatively few parameters to fine-tune: the popu-
lation size (popsize); the maximum number of conflict checks allowed (maxCC);
the bias of the biased linear ranking parent selection operator; and the size of
the parent population. Although it is possible to vary the size of the parent pop-
ulation, as in [3], we keep it equal to the number of individuals in the population
(popsize), with no noticeable effects on performance in preliminary experiments.
From [3], as well as other studies ([1,2]), we took 1.5 as bias for the biased linear
ranking selection operator. This leaves us with just two parameters to fine-tune:
popsize, and maxCC .

Although in [1] and [2] small population sizes were advocated, extensive exper-
imentation in [3] shows that larger populations were more appropriate, mostly
because of the beneficial effects on the population diversity. There is a trade-
off to consider though. With small populations, more computational effort can
be spend on increasing the fitness of the individuals over more generations. Al-
though a relatively small number of search-paths can be followed in parallel, they
can be followed to more depth. The drawback is that small populations have the
tendency to lose population diversity, thus increasing the risk of getting the al-
gorithm stuck in a local optimum from which it can not escape. On the other
hand, larger populations allow for more search-paths to be followed in parallel,
but to a lesser depth, while maintaining a higher population diversity. It is not
possible to predict where in the popsize-maxCC parameter space the optimum
parameter setting lies, and as such, we experimented with a large number of
parameter combinations to find it. This also allows us to identify the optimum
parameter settings for each density-tightness combination, in case this differs.

The experimental setup of the CTLEA is then as follows: for each CSP-
instance in the test-set (of which there are 225), we run the algorithm 10 times.
Varying combinations of population size (popsize) and maximum number of con-
flict checks allowed (maxCC) are used. The popsize parameter is taken from the
following set: {10}∪{50, 100, 150, . . . , 2000} (41 elements). The maxCC parame-
ter is taken from the following set: {100000, 200000, . . . , 2000000} (20 elements).
In total 225 × 10 × 41 × 20 = 1, 845, 000 runs were performed.

5 Results

Figure 1 summarises the results of the experiments described in the previous
section. It consists of 9 graphs, each showing the result for one density-tightness
combination in the test-set. The top row of graphs show the results for density-
tightness combinations 1 to 3, the middle row the results for density-tightness
combinations 4 to 6, and the bottom row the results for density-tightness com-
binations 7 to 9. Figure 1 shows the influence of different values of maxCC
on the SR for different values of popsize. Along the x-axis of each graph in
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Fig. 1. The relationship between the population size (x-axis) and the success rate
(y-axis) of the CTLEA for different maximum number of conflict checks allowed

figure 1 the popsize is shown, the y-axis shows the SR, while each curve in the
graph was found for different values of maxCC .

The same trend is noticeable for SR in all graphs: the SR first increases when
larger values for popsize and maxCC are used, but drops off sharply when the
popsize gets too large relative to the available maxCC . At the point where the
CTLEA solves all CSP-instances (SR = 1.0), just enough maxCC is available for
the popsize but not more. Beyond this point, SR decreases for increased popsize
but equal maxCC . Each curve therefore describes an arc with increasing SR
for larger values of popsize, until popsize is increased to the maximum value
able to be successfully maintained by the available maxCC , after which SR
decreases again. Differences between the different graphs in figure 1 can partially
be explained by differences in complexity between the different density-tightness
combinations. CSP-instances in density-tightness combination 1, for example,
are known to be easier to solve than those in density-tightness combination 9,
and the number of conflict checks needed to sustain the population while reaching
a perfect SR reflect that.

Table 1 shows, for each density-tightness combination, the first parameter com-
bination for reaching a perfectSR,popsize minimised before maxCC, as well as the
ACCS used to find the solutions. Note the increasing size of popsize and maxCC
needed for reaching a perfect SR for the different density-tightness combinations.
Because the CSP-instances for the different density-tightness combinations
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Table 1. Success rate (SR) and average conflict checks to solution (ACCS) for the best
population size (popsize) and maximum conflict checks allowed (maxCC) parameters.

SR ACCS popsize maxCC

1 1.0 1313 100 100000
2 1.0 4670 200 100000
3 1.0 20283 400 100000
4 1.0 50745 600 100000
5 1.0 94931 800 200000
6 1.0 167627 1100 300000
7 1.0 239106 1200 400000
8 1.0 254902 1050 700000
9 1.0 240046 950 500000

Table 2. Comparing the success rate and average conflict checks to solution of the
CTLEA, the STLEA, Hill-climbing algorithm with Restart (HCAWR), Chronological
Backtracking Algorithm (CBA), and Forward Checking with Conflict-Directed Back-
jumping Algorithm (FCCDBA)

CTLEA STLEA HCAWR CBA FCCDBA
SR ACCS SR ACCS SR ACCS SR ACCS SR ACCS

1 1.0 1313 1.0 2576 1.0 234242 1.0 3800605 1.0 930
2 1.0 4670 1.0 67443 1.0 1267015 1.0 335166 1.0 3913
3 1.0 20283 1.0 313431 1.0 2087947 1.0 33117 1.0 2186
4 1.0 50745 1.0 397636 1.0 2260634 1.0 42559 1.0 4772
5 1.0 94931 1.0 319212 1.0 2237419 1.0 23625 1.0 3503
6 1.0 167627 1.0 469876 1.0 2741567 1.0 44615 1.0 5287
7 1.0 239106 1.0 692888 1.0 3640630 1.0 35607 1.0 4822
8 1.0 254902 1.0 774929 1.0 2722763 1.0 28895 1.0 5121
9 1.0 240046 1.0 442323 1.0 2465975 1.0 15248 1.0 3439

(perhaps with the exception of density-tightness combination 1) were selected to
minimise complexity variance, the increasing popsize and maxCC needed to solve
the higher density-tightness combinations thus seems to reflect an aptitude of the
algorithm to solve CSP-instances with a lower tightness, i.e., fewer average con-
flicts per constraint.

Table 2 shows a comparison of the performance of the CTLEA with the
STLEA from [3], and benchmark algorithms from [2]. Table 2 shows that the
CTLEA outperforms STLEA on all CSP-instances with density-tightness combi-
nations. As the STLEA, the CTLEA compares favourably with the Hill-climbing
with Restart Algorithm (HCAWR), with efficiency measured in ACCS several
magnitudes better. Compared with the Chronological Backtracking Algorithm
(CBA), the CTLEA outperforms it on CSP-instances with density-tightness
combinations 1, 2, and 3, but is outperformed on all others. This shows that in
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the area where CTLEA has shown good performance, CSP-instances with lower
tightness, it can outperform a classical algorithm. Compared with the more so-
phisticated Forward Checking with Conflict-Directed Back-jumping Algorithm
(FCCDBA) (a combination of forward-checking [13] and conflict-directed back-
jumping [14]) however, the CTLEA can only approach performance on CSP-
instances the first two density-tightness combinations, but is outperformed in
all others. Overall, the CTLEA raised the performance bar a little higher for
EAs, but remains unable to beat sophisticated deterministic algorithms on effi-
ciency.

6 Conclusions

This paper introduced the Conflict Tabu Search Evolutionary Algorithm
(CTLEA) for solving binary constraint satisfaction problems. The CTLEA is
a hybrid algorithm, incorporating elements of an evolutionary and the tabu
search meta-heuristic. The CTLEA is based on the Simple Tabu Search Evolu-
tionary Algorithm (STLEA), introduced in [3], substituting its compound label
tabu list with a tabu list limiting the search space by storing of conflicts. The
rational behind choosing conflicts for the CTLEA tabu list is the comparatively
limited number of conflicts and their usefulness in the new move-operator. Like
the STLEA, the CTLEA maintains the basic structure of an evolutionary algo-
rithm, but merges the crossover and mutation operator in one ’move-operator’.
Further efficiency improvements were achieved by using the same representation
as was used in the STLEA.

A large number of parameter tuning experiments were performed for different
density-tightness combinations of a commonly used test-set. The performance
of the CTLEA with the best parameter settings was found to outperform the
STLEA, making it the best performing EA for solving the binary CSP found
thus far.

Although comparable in performance to the Chronological Backtracking Al-
gorithm on CSP-instances with lower tightness, the CTLEA continues to be out-
performed by the more sophisticated Forward Checking with Conflict Directed
Back-jumping Algorithm.

Future research will focus on comparing the relative behaviour of the CTLEA
to other algorithms when size of the CSP-instances is increased and the effects
of using different types of tabu lists on performance.
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