Stepwise Adaption of Weights with Refinement and Decay on
Constraint Satisfaction Problems

B.G.W. Craenen
Computational Intelligence Group
Faculty of Exact Sciences
Vrije Universiteit Amsterdam
bceraenen@cs.vu.nl

Abstract

Adaptive fitness functions have led to very
successful evolutionary algorithms (EA) for
various types of constraint satisfaction prob-
lems (CSPs). In this paper we consider
one particular fitness function adaptation
mechanism, the so called Stepwise Adaption
of Weights (SAW). We compare algorithm
variants including two penalty systems and
we experiment with extensions of the SAW
mechanism utilizing a refinement function
and a decay function. Experiments are ex-
ecuted on binary CSP instances generated
by a recently proposed method (method E).
This new method for generating problem in-
stances allows one single hardness parameter
and is well suited to study algorithmic behav-
ior around the phase transition. The results
show that the original version of the SAW
mechanism is very robust and has a compara-
ble or better performance than the extended
SAW mechanisms.

1 INTRODUCTION

Informally, a constraint satisfaction problem (CSP)
consists of finding an assignment of values to vari-
ables in such a way that the restrictions imposed by
the given set of constraints are satisfied. Constraint
satisfaction is a fundamental topic in artificial intel-
ligence with great practical and theoretical relevance.
On the practical side, CSPs have relevant applications
in planning, default reasoning, scheduling, etc. and a
great deal of practical problems are constrained. The-
oretically, CSPs are, in general, computationally in-
tractable (NP-hard) thereby forming a big challenge
to algorithm designers.

A.E. Eiben
Computational Intelligence Group
Faculty of Exact Sciences
Vrije Universiteit Amsterdam
gusz@cs.vu.nl

Evolutionary algorithms are known for their good per-
formance in the field of optimization. Constraint han-
dling, however, is not straightforward in an EA as the
traditional search operators, mutation and recombi-
nation do not heed constraints (or their violation).
Nevertheless, there is a growing body of literature
on applying EAs to various CSPs, such as graph-
coloring, satisfiability, or randomly generated binary
CSPs. One research line is based on a pure penalty
approach, where the evolutionary algorithm handles
all constraints indirectly. That is, all constraint viola-
tions are turned into penalties and the EA is “only”
optimizing an unconstrained problem where the fit-
ness function is composed from these penalties. In
this approach any direct constraint handling (e.g. spe-
cific constraint respecting mutation or crossover op-
erators, or repair mechanisms fixing some constraint
violations) is absent, making it very transparent and
general.

The SAW procedure is an add-on to this general
scheme to boost performance (to minimize the penal-
ties more effectively): It adaptively changes the com-
position of the fitness function during the search pro-
cess. Here we experiment with the SAW EA with two
penalty systems (penalizing the violated constraints
vs. penalizing the wrongly instantiated variables), dif-
ferent refinement functions, and decay functions, so as
to give a complete overview of different variations on
this algorithm.

Another novelty in the present work is the usage of
a recently proposed problem instance generator. As
shown by Achlioptas et al. in [1], the widely applied
CSP generators (much used in EA research) have seri-
ous deficiencies. Most importantly, the generated in-
stances tend to be asymptotically unsolvable, prevent-
ing a sound study of algorithmic behavior around the
phase transition. The proposed alternative cures this
problem and has an additional nice feature: It allows
one single hardness parameter, making the presenta-



tion (and interpretation) of results much easier.

The paper is organized as follows. Section 2 will de-
fine the notation and terminology we use for describ-
ing CSPs and in section 4 we will examine further
how CSPs are generated using model E. In section
4.1 we will discuss how the standard stepwise adap-
tion of weights method will work on these CSPs while
in section 4.2 the refining function and the adaptation
mechanisms are discussed. In section 4.3 the decay
mechanisms are discussed, followed by the experimen-
tal results in section 5. Conclusions are given in section
6.

2 NOTATION AND
TERMINOLOGY

A constraint network consists of a set of variables
Xi,..., X, with respective domains Dy,...,D,, and
a set of constraints C. The Cartesian product of sets
Dix ---xD,, is called the search space and denoted by
S. For 2<k<n, a constraint c;,,..;, €C,j=1,...,m
is a subset of Dj, x --- x Dj,, where the ji,...,j
are distinct. We say that cj, .. ;. is of arity k¥ and
that it bounds the variables X; ,...,X; and that
CJr-+% is the set of constraints that bound variables
Xi,..., X' For a given constraint network, the Con-
straint Satisfaction Problem (CSP) asks for all the
n-tuples (di,...,d,) of values such that d; € D;,
i=1,...,n,andforeveryc;, . ;. €C,(dj,...,d;.) ¢
Cjrrojrsd = 1,...,m. Such an n-tuple s € S is called
a solution of the CSP. The decision version of the CSP
is determining if a solution exists.

For an instance IT of CSP with n variables, its con-
straint hypergraph G has n vertices vy, ...,v,, which
correspond to the variables of II and it contains
a hyperedge {vj,,...,v; } if and only if there ex-
ists a constraint of arity k£ that bounds the vari-
ables Xj,,..., X;,. The following convenient graph-
theoretic representation of a CSP instance IT will be
used; the incompatibility hypergraph of I, C', is an n-
partite hypergraph of which the ¢th part corresponds
to variable X; of I which has exactly |D;| vertices,
one for each value in D;. In C™ there exists a hyper-
edge {vj,,...,v;. }, if and only if the corresponding
values dj, € D;,, dj, € Dj,,...,dj, € Dj, arein (not
allowed by) some constraint that bounds the corre-
sponding variables. Hence, the decision version of CSP
is equivalent to asking if there exists a set of vertices in
C containing exactly one vertex from each part while
not ‘containing’ any hyperedge, i.e., if there exists an

'We use shorthand ¢; and C7 if it cannot lead to confu-
sion.

independent set with one vertex from each part?. We
define the Boolean function ¢ on the search space S as
the feasibility condition, with ¢(s) = trueif and only if
s is a solution of S, while the set {s € S|@(s) = true}
will be called the feasible search space.

Note that for the sake of simplicity we study binary
CSPs where all constraints have arity ¥ = 2 (bound
two variables) and where all the variable domains con-
tain the same number of values D. We adhere to this
simplification because it restricts experimental com-
plexity and every CSP of arity larger than two has an
equivalent binary CSP ([17]).

3 GENERATING CSPS

In [1], Achlioptas et al. show that the so-called Models
A to D are unsuitable for the study of phase transition
and threshold phenomena such as CSPs. This is be-
cause the instances they asymptotically generate have
almost certainly no solutions.

A general framework for these models, presented in
[15, 16] works in two steps:

Step 1 Either (i) each one of the (%) edges is selected
to be in G independently of all other edges with prob-
ability p1 (constraint density), or (i) we uniformly
select a random set of edges of size p; (g)

Step 2 FEither (i) for every edge of G each one of the
D? edges in C is selected with probability ps (constraint
tightness), or (ii) for every edge of G we uniformly
select a random set of edges in C of size py D?

Combining the options for the two sets, we get four
slightly different models for generating random CSPs,
in particular, in the terminology used in [16], if both
Step 1 and 2 are done with option (i), we get Model
A, while if both steps are done with option (1), we get
Model B.

As Achlioptas et al. show in [1] Model A generates al-
most certainly unsatisfiable instances for every py # 0,
while Model B generates almost certainly unsatisfi-
able instances for every p» > 1/D (analogously for
the other two models). They further show that one
source of this asymptotic insolubility is the appear-
ance of ‘flawed’ values, i.e., values that are incompati-
ble with all the values of some other variable. A num-
ber of experimental studies, as reported in [14] have
avoided this pitfall, but many others did not.

2The superscript from both the constraint and the in-
compatibility hypergraph will be omitted when it is clear
from the context what instance is referred too



In the same paper, Achlioptas at al., proposed an al-
ternative model for generating random CSP instances
(Model E), which does not suffer from the deficiencies
underlying the other models. This model resembles
the model used for generating random boolean formu-
las for the satisfiability problem and the constraints
it generates are similar to the ‘nogoods’ proposed by
Williams and Hogg ([18]). This model is defined as:

Definition 1 C" is a random n-partite graph with D
vertices in each part constructed by uniformly, inde-
pendently and with repetitions selecting m = p (Z)Dk
hyperedges out of the (Z)Dk possible ones, with k = 2
for binary constraint networks. Also, let r = m/n de-
note the ratio of the selected edges to the number of
variables.

Such a model can be fully specified as E(n,m, D, k),
where n is the number of variables, m is the number of
constraints, D is the number of values in each domain
and k is the arity of each constraint. Informally one
could say that Model E works by choosing uniformly,
independently and with repetitions conflicts between
two values of two different variables. The paper con-
tinues by stating that for a random instance II gen-
erated using Model E, if we have r < 1/2, IT almost
certainly has a solution and it is possible to bound the
underconstrained and overconstrained regions.

It was known for Model A to D, that, when one
of their parameters was varied, the generated CSP
would exhibit a so called phase transition, where
problems change from being relatively easy to solve
to being very easy to prove unsolvable. The region
where the probability that a problem is soluble
changes from almost zero to almost one is gener-
ally indicated as the mushy region. In the mushy
region, problems are in general difficult to solve or
prove unsolvable and therefore of particular interest
when comparing different algorithms for efficiency.
In [1] Achlioptas et al. show that Model E also
exhibits a phase transition when one of its variables
is changed and, they give bounding formulas for the
mushy region. In this paper, all CSP instances are
generated using Model E with n = 15 variables,
domain size D = 15, k = 2, probabilities from the set
{0.20,0.22,0.24,0.26,0.28,0.30,0.32,0.34,0.36, 0.38 },
and the corresponding values of m (see Definition 1).
This puts all generated instances between the under-
and overconstrained regions.

4 ADAPTIVE FITNESS
FUNCTIONS FOR CSPS

4.1 STANDARD STEPWISE ADAPTION
OF WEIGHTS

The Stepwise Adaptation of Weights (SAW) mecha-
nism has been introduced by Eiben and van der Hauw
[7, 8]. In several comparisons the SAW EA proved to
be a superior technique for solving specific CSPs [9, 2].
The basic idea behind the SAW mechanism is that con-
straints that are not satisfied after a certain number
of search steps (i.e. fitness evaluations), must be hard
and therefore be given more attention. This is real-
ized by using a weighted sum of constraint violations
as fitness function and varying these weights to direct
the search. Technically, all weights are given an initial
value of 1 and re-setting them happens by adding a
value Aw after a certain predefined number of evalu-
ations. The best individual of the given population is
used as reference for weight updates. Constraints that
are violated in the current-best-individual are given a
higher weight during an update operation.

The two penalty systems we compare here differ in
the elementary penalty terms the fitness function is
composed from. Namely, these terms can be based on:

1. constraints that are violated, or on

2. wvariables that are wrongly instantiated.

These two mechanisms can formally be described as
follows:

fi(s) = Zwi - X(8,¢:), (1)

where
(5,01) = 1 if s violates ¢;
XU:€) =10 otherwise
respectively
n .
fQ(S) :Zwi'X(svcl)a (2)
i=1
where

(5,C) = 1 if s violates at least onec € C?
XEETZ 0 otherwise

Obviously, for the above functions fi, f> and for each
s € S we have that ¢(s) = true if and only if f;(s) =0
with ¢ € {1,2}.

The corresponding adaption schemes, that is, weight
update mechanisms, are as follows:

w; +— w; + x(X*,¢) fori € {1,...,m} (SAW_,,)



respectively
w; + w; + x(X*,C) fori € {1,...,n} (SAW,,,)

with X* denoting a variable in the best individual in
the population found so far.

4.2 REFINING FUNCTIONS

In [12] and [13], Gottlieb and Voss have shown that re-
fining functions improve the performance of SAW for
3-SAT problems. Here we investigate if using these
refining functions also improves performance on ran-
domly generated binary CSPs. Extending the SAW
EA with a refining function means to add a term
a-r(X) to the fitness functions leading to the following
definitions:

fa(s) = Zw x(s,ci) +a-r(X) (3)
respectively
fal(s) = Z w; - x(s,C) + a - r(X) (4)

Adding a - r(X) to the fitness function makes it pos-
sible to differentiate between individuals having the
same basic fitness value. Note that the refining func-
tion values are limited to the range [0,1). By using a
refining factor «, the influence of the refining function
on the fitness function can be tuned. The original def-
inition of the refining function used in [13] is adapted
to CSPs as follows:

r(X) = % <1+

Z?:l K(X]) : Uj

with

K(Xj)Z{

1 if X is not causing a violation in X*
—1 otherwise

where weight v; belongs to variable X;. Note that
r(X) always adds a term concerning the wrongly in-
stantiated variables and we get two separate sets of
weights. In case of fi (f3) we get weights w; with
i € {1,...,m} for the constraints and weights v; with
j € {1,...,n} for the variables. In case of fy (f1)
both sets of weights w; with i € {1,...,n} and v;
with j € {1,...,n} concern the variables.

In both cases the update rule SAW,,,, respectively
SAW,,» can be used for the w’s and we introduce a
new rule for the v’s. The values for the v’s are also
initiated with 1 and updated simultaneously with the
w’s.

Following [13] we, in fact, introduce two different up-
date rules for the weights in the refinement function.
The rule AW1 is a problem-independent version which
reflects a moderate adjustment of the weights towards
the complement of the current best individual X*,

vj < v; — K(z}) forje{l,...,n} (AW1)

The rule AW2 is a problem-dependent version that
uses CSP specific knowledge in C':

vj v — Y K@)|C=})] jefl,...,n} (AW2)
=1

AW?2 takes into account that it is necessary to change
a variable that has an unsatisfied constraint that binds
it in order to improve the current solution and hence
guides the EA towards solutions satisfying yet unsat-
isfied constraints. We denote the SAW algorithm that
uses f3 with update rule AW1 as SAW op ref,awi
and if it uses f; with update rule AW1 we use
SAW yar rer,awi. We replace AW1 subscript with
AW 2 if the SAW algorithm uses the AW 2 update rule.

4.3 DECAY

In [11], Frank showed that WGSAT, a local search
algorithm using clause weights, is susceptible to large
absolute weights and convergence of relative weights.
To overcome this problem he suggested a decay factor.
A decay factor yields a chance to reduce high absolute
weights, which allows a correction of inappropriately
adapted weights. Given the decay factor 8 € [0, 1], we
consider the decayed adaption schemes:

w;i < Pw; + x(X*,¢;) (SAW 40r4)
w; + Pw; + X(X*,Ci) (SAWcon,d)
Vj ﬁl}j — K(x;) (AW].d)
vj ¢ Buj = 3o K (27)| C' (7)) | (AW2q)

As already observed for WGSAT in [11] and for SAW
in [13], for 3-SAT, the good S-values are very close to 1.
The same behavior for large decay rates occurred us-
ing the SAW mechanisms for CSPs as it did for 3-SAT.
If the decay rate was too large (8 too small, approxi-
mately 8 < 0.9), it destroyed much of the information
learned during the search process.

5 EXPERIMENTAL RESULTS

We used a steady-state evolutionary algorithm with
order-based representation that proved to be the best
option in [10]. Here an individual is a permutation of



the variables and a decoder is used to assign domain
values to each variable in the order they appear in
a given permutation. The decoder sequentially takes
variables from the permutation and tries to instanti-
ate it with values that do not violate any constraints
that bind already instantiated variables. If the decoder
does not find such a value, the variable is left unin-
stantiated. (Technically, it is instantiated to a special
value indicating a conflict.) Earlier work has shown
that small populations produce the best performance
and that for CSPs a population size of just 1 is optimal.
Therefore, we use a (1 + 1) style EA and no crossover
operation is needed. The mutation operator is a simple
swap operator, which randomly chooses one variable
in the given permutation and swaps it with another
randomly chosen variable. The initial population is
generated randomly and the weights are adapted each
time 250 evaluations have been done. (Preliminary ex-
periments with different adaption periods showed lit-
tle differences in performance; 250 gave just slightly
better results than other values.) After a maximum
of 100,000 evaluations, the runs were terminated. As
mentioned in section 3, we used a set of 10 different
probabilities for the Model E CSP generator. With
each of these probabilities we generated 25 instances
and performed 10 runs over each instance, resulting in
250 runs for every p value for each algorithm variant.

We used two measures of comparison for the algo-
rithms; first Success Rate (SR), which denotes the
percentage of the runs that were completed with a so-
lution®; second, Average number of Evaluations to a
Solution (AES). Note that the last measure is only de-
fined when a solution was found and that, although it
seems a ‘fair’ measure, it could be misleading as some
EAs use ‘hidden labor’ which could be invisible to the
measure. An example of hidden labor could be some
of the work done in (AW2), where problem-specific
knowledge was used in the fitness function.

We experimented with SAW algorithms using the dif-
ferent fitness functions (f1, fo, f3, f1), using the two
refining functions (AW1 and AW?2) for fitness func-
tions f3 and fy and using the decay mechanisms.

The results are depicted in figure 1, the corresponding
numerical figures are given in table 1. These outcomes
show that there is little difference between the SAW
algorithms that consider either constraints or variables
(fitness functions f; or fo). It might be observed that
SAW . has a small advantage in Average Evaluations
to Solution (AES) but when comparing Success Rate
(SR), the differences are small. In instances with prob-

3We use the decimal notation of a percentage: 10% =
0.10

T T T T T T T 00—
— SAIT,,
X SV,
23000 4

20000
14,
4 15000 -

10000 |-

3000 -

—— SV,
<%= SAW,,
1 1

0 Il Il Il Il Il Il %k g Il Il Il
02 02 04 0% 03X 03 032 03 036 03 0202 024 026 03X 03 032 034 036 03

Probability Probability

Figure 1: SR and AES graphs for SAW ., and SAW,,,

ability 0.34 and 0.38 SAW,,, has a better SR, while
in instances with probability 0.36 SAW .,,, solved more
instances. Other instances were solved by both algo-
rithms equally well (SR) and until p = 0.24 the speed
figures (AES) are also the same. The standard devi-
ations of the averages for AES (not presented here)
were also so close that no further distinction could be
made.

The little difference between trying to solve CSPs with
either penalizing variables or constraints is somewhat
surprising if we consider that there are much more
constraints than variables. This implies that SAW,,,
working with the fitness function f; has more infor-
mation, but apparently fs is already “strong” enough.

SAanr SAWcon

SR AES SR AES
020 | 1 9.936 1 9.936
0.22 | 1 17.304 1 17.304
024 |1 45632 |1 45.632
0.26 | 1 104.448 | 1 106.336
0.28 | 1 258.28 1 311.068
030 | 1 870.556 | 1 1023.66
032 |1 2984.63 | 1 3322.18
0.34 | 0.816 13962.6 | 0.808 15212.3
0.36 | 0.396 21683.3 | 0.424 22480.3
0.38 | 0.124 18968.3 | 0.108 12332.2

Table 1: Numerical results for SAW,,, and SAW,,,,

The results of the experiments with the ex-
tended SAW mechanism are given in table 2 for
SAW yar ref,aw1 and SAW .o, rer,aw1 and in table 3
for SAW yar ref, awa and SAW .o, rer aw2. The figures
show that the addition of the refining function AW1
produced no improvement at all. Experiments were
also performed with varying refinement factors, even
up to values where the performance of the algorithms



began to deteriorate. Differences between the refining
functions (AW1 and AW2) are also small, which in-
dicates that adding extra domain information, in the
form of C', also did not improve search performance.
This is also surprising because one would expect to in-
crease search speed when incorporating extra domain
knowledge. This might come at the cost of premature
convergence because of searching too greedily

SAanr,ref,AWl SAWcon,ref,AWI

SR AES SR AES
0.20 |1 9.936 1 9.936
022 |1 17.304 1 17.304
024 |1 45.632 1 45.632
026 | 1 104.448 | 1 106.336
028 |1 258.28 1 311.068
030 |1 870.556 | 1 1023.66
0321 2084.63 | 1 3322.18
0.34 | 0.816 13962.6 | 0.808 15212.3
0.36 | 0.396 21683.3 | 0.424 22480.3
0.38 | 0.124 18968.3 | 0.108 12332.3
Table 2: Results for SAW,qrrep,aw1  and
SAWcomref,AWl

SAanr,ref,AWZ SAWcon,ref,AW2

SR AES SR AES
020 |1 9.936 1 9.936
022 (1 17.304 1 17.304
024 |1 45.632 1 45.632
0.26 | 1 104.448 | 1 104.524
028 | 1 258.28 1 252.996
030 |1 870.556 | 1 1048.48
0.32 | 0.996 2984.63 | 1 3430.64
0.34 | 0.816 13962.6 | 0.840 16487.5
0.36 | 0.396 21683.3 | 0.368 20957.4
0.38 | 0.124 18968.3 | 0.116 23669.4
Table 3: Results for SAW,qp rer aw2  and
SAWconmef,AWZ

When interpreting these results, recall that the refin-
ing function was designed to distinguish between indi-
viduals having the same basic fitness value. The lack
of improvement when using refining functions seems to
imply that in case of binary CSPs, the basic functions
f1 and f> contain sufficient information to guide the
search successfully.

Experiments using decay factor for solving SAT prob-
lems showed that values around 8 = 1 work best, cf.

[11, 13]. Our studies with random binary CSPs also
indicated the same. However, we also found that ap-
plying decay to the SAW technique did not change al-
gorithm performance significantly when § values were
taken from the set {0.95,0.96,0.97,0.98,0.99,1.00}.
Note that f = 1.00 amounts to no decay. Therefore
this observation implies that algorithm variants with-
out decay and with decay using a good 8 value are not
performing differently.

Figure 2 gives an illustration by showing typical runs
using different decay factors. These runs were per-
formed on instances generated with probability 0.32.
Note that the figure only presents the search speed
results (AES). The success rates are not given be-
cause all algorithms solved all instances, except for
SAW yar ret,aw1,4 With decay factor 0.98 which solved
096% of the instances (a SR of = 0.96). The curves in-
dicate a difference between SAW 4, ¢ and the other
algorithms. Namely, SAW 4, ;e using either AW1 or
AW?2 seems to improve when switching off decay, i.e.
for § = 1.0. For all other algorithms a decay factor
has no significant influence on the search speed. Recall
that the decay of weights in the SAW fitness function
was added to actively suppress the growth of weight
values. These results indicate that such a growth —
identified as dangerous in related fields, cf. [11, 13],
— either does not occur or is not harmful in case of
random binary CSPs.

AES

Decay Factor

Figure 2: graphs of SAW 4, ¢ and SAW ., 4 with dif-
ferent decay factors. p = 0.32, A = 250, refinement-
factor a = 40

6 CONCLUSIONS

The research presented in this paper had a twofold
objective: presenting and illustrating a recently pro-
posed problem instance generator for binary CSPs and
comparing a number of variants and extensions of the
SAW technique. In particular, we used a CSP gener-
ator based on the so-called model E in [1]. We found
that the phase transition effects were clearly observ-



able and by the use of one single hardness parameter
the results were easier to present — and to interpret —
than in case of the formerly used two-parameter-based
generators [3, 4, 5, 10]. The new generator deserves a
recommendation for further experimental research.

As for the algorithm variants, we experimented with
the unextended version of the SAW technique with
two penalty systems: one calculated over the variables
and one calculated over the constraints. They turned
out to yield very similar performance, which is sur-
prising. The constraint based fitness function, after
all, is based on more information as there are usually
more constraints than variables and one would expect
to improve a search algorithm when using more infor-
mation.

Inspired by related work on satisfiability problems we
have also experimented with two extensions of SAW-
ing. In particular, we tried refining functions and a
decay mechanism. A refining function « - r(X) added
to the fitness function makes it possible to differenti-
ate between individuals having the same basic fitness
value. We found that the application of refining func-
tions did not improve performance and that varying
the refining factor a did not have any influence on
performance. These results seem to imply that in case
of binary CSPs the basic functions f; and f> contain
sufficient information to guide the search successfully.

The addition of the decay factor did not improve the
performance in general either, neither for the origi-
nal SAW techniques, nor for the SAW technique with
a refining function. In fact it had a negative effect
on SAW 4 rer- This might be the consequence of
the relatively small problem size, where the accumu-
lation of large relative weights stays within limits and
thus does not need a counterforce. This finding points
to the same direction as our conclusion about refine-
ment functions: the basic SAW mechanism is powerful
enough to solve random binary CSPs.

All in all, the comparison of the algorithm variants
shows a surprising, but pleasant picture: The simplest
setup (SAW with variable related penalties, no exten-
sions) is as good or better than any of the more sophis-
ticated variants. Although current and future research
will undoubtfully refine this picture, for the time being
this is good news for algorithm designers.

Further research is carried out with new types of refin-
ing functions, problems with varying sizes (scale-up),
and larger population sizes.

References

[1]

[2]

[7]

D. Achlioptas, L.M. Kirousis, E. Kranakis,
D. Krizanc, M.S.0. Molloy, and Y.C. Stama-
tiou. Random constraint satisfaction: A more
accurate picture. In G. Smolka, editor, Princi-
ples and Practice of Constraint Programming —
CP97, number 1330 in Lecture Notes in Computer
Science, pages 107-120, Berlin, 1997. Springer-
Verlag.

Th. Béck, A.E. Eiben, and M.E. Vink. A superior
evolutionary algorithm for 3-SAT. In V.W. Porto,
N. Saravanan, D. Waagen, and A.E. Eiben, edi-
tors, Proceedings of the 7th Annual Conference on
Evolutionary Programming, number 1477 in Lec-
ture Notes in Computer Science, pages 125-136,
Berlin, 1998. Springer-Verlag.

J. Bowen and G. Dozier. Solving constraint
satisfaction problems using a genetic/systematic
search hybride that realizes when to quit. In
L.J. Eshelman, editor, Proceedings of the 6th In-
ternational Conference on Genetic Algorithms,
pages 122-129. Morgan Kaufmann Publishers,
Inc., 1995.

G. Dozier, J. Bowen, and D. Bahler. Solving small
and large constraint satisfaction problems using a
heuristic-based microgenetic algorithm. In Pro-
ceedings of the 1st IEEE Conference on FEvolu-
tionary Computation, pages 306-311. IEEE Com-
puter Society Press, 1994.

G. Dozier, J. Bowen, and A. Homaifar. Solving
constraint satisfaction problems using hybrid evo-
lutionary search. Transactions on Evolutionary
Computation, 2(1):23-33, 1998.

A_E. Eiben, Th. Béack, M. Schoenauer, and H.-
P. Schwefel, editors. Proceedings of the 5th Con-
ference on Parallel Problem Solving from Nature,
number 1498 in Lecture Notes in Computer Sci-
ence, Berlin, 1998. Springer-Verlag.

A.E. Eiben and J.K. van der Hauw. Solving 3-
SAT with adaptive Genetic Algorithms. In Pro-
ceedings of the 4th IEEE Conference on FEvolu-
tionary Computation, pages 81-86. IEEE Com-
puter Society Press, 1997.

A.E. Eiben and J.K. van der Hauw. Adaptive
penalties for evolutionary graph-coloring. In J.-K.
Hao, E. Lutton, E. Ronald, M. Schoenauer, and
D. Snyers, editors, Artificial Evolution ’97, num-
ber 1363 in Lecture Notes in Computer Science,
pages 95-106, Berlin, 1998. Springer-Verlag,.



[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

A.E. Eiben, J.K. van der Hauw, and J.I
van Hemert.  Graph coloring with adaptive
evolutionary algorithms. Journal of Heuristics,
4(1):25-46, 1998.

A.E. Eiben, J.I. van Hemert, E. Marchiori, and
A.G. Steenbeek. Solving binary constraint sat-
isfaction problems using evolutionary algorithms
with an adaptive fitness function. In Eiben et al.
[6], pages 196-205.

J. Frank. Learning short-term weights for GSAT.
Technical report, University of California at
Davis, oct 1996.

J. Gottlieb and N. Voss. Improving the perfor-
mance of evolutionary algorithms for the satisfi-
ability problem by refining functions. In Eiben
et al. [6].

J. Gottlieb and N. Voss. Adaptive fitness func-
tions for the satisfiability problem. In M. Schoe-
nauer, K. Deb, G. Rudolph, X. Yao, E. Lut-
ton, J.J. Merelo, and H.-P. Schwefel, editors, Pro-
ceedings of the 6th Conference on Parallel Prob-
lem Solving from Nature, number 1917 in Lec-
ture Notes in Computer Science, Berlin, 2000.
Springer-Verlag.

E. Maclntyre, P. Prosser, B.M. Smith, and
T. Walsh. Random constraint satisfaction: theory
meets practice. In M. Maher and J.-F. Puget, ed-
itors, Principles and Practice of Constraint Pro-
gramming — CP98, pages 325-339, Berlin, 1998.
Springer-Verlag.

P. Prosser. An empirical study of phase transi-
tions in binary constraint satisfaction problems.
Journal of Artificial Intelligence, 81:81-109, 1996.

B.M. Smith and M.E. Dyer. Locating the phase
transition in binary constraint satisfaction prob-
lems.  Journal of Artificial Intelligence, 81(1-
2):155-181, 1996.

E.P.K. Tsang. Foundations of Constraint Satis-
faction. Academic Press Limited, 1993.

C.P. Williams and T. Hogg. Exploiting the deep
structure of constraint problems. Journal of Ar-
tificial Intelligence, 70:73-117, 1994.



