
Stepwise Adaption of Weights with Re�nement and Deay onConstraint Satisfation ProblemsB.G.W. CraenenComputational Intelligene GroupFaulty of Exat SienesVrije Universiteit Amsterdambraenen�s.vu.nl A.E. EibenComputational Intelligene GroupFaulty of Exat SienesVrije Universiteit Amsterdamgusz�s.vu.nlAbstratAdaptive �tness funtions have led to verysuessful evolutionary algorithms (EA) forvarious types of onstraint satisfation prob-lems (CSPs). In this paper we onsiderone partiular �tness funtion adaptationmehanism, the so alled Stepwise Adaptionof Weights (SAW). We ompare algorithmvariants inluding two penalty systems andwe experiment with extensions of the SAWmehanism utilizing a re�nement funtionand a deay funtion. Experiments are ex-euted on binary CSP instanes generatedby a reently proposed method (method E).This new method for generating problem in-stanes allows one single hardness parameterand is well suited to study algorithmi behav-ior around the phase transition. The resultsshow that the original version of the SAWmehanism is very robust and has a ompara-ble or better performane than the extendedSAW mehanisms.1 INTRODUCTIONInformally, a onstraint satisfation problem (CSP)onsists of �nding an assignment of values to vari-ables in suh a way that the restritions imposed bythe given set of onstraints are satis�ed. Constraintsatisfation is a fundamental topi in arti�ial intel-ligene with great pratial and theoretial relevane.On the pratial side, CSPs have relevant appliationsin planning, default reasoning, sheduling, et. and agreat deal of pratial problems are onstrained. The-oretially, CSPs are, in general, omputationally in-tratable (NP-hard) thereby forming a big hallengeto algorithm designers.

Evolutionary algorithms are known for their good per-formane in the �eld of optimization. Constraint han-dling, however, is not straightforward in an EA as thetraditional searh operators, mutation and reombi-nation do not heed onstraints (or their violation).Nevertheless, there is a growing body of literatureon applying EAs to various CSPs, suh as graph-oloring, satis�ability, or randomly generated binaryCSPs. One researh line is based on a pure penaltyapproah, where the evolutionary algorithm handlesall onstraints indiretly. That is, all onstraint viola-tions are turned into penalties and the EA is \only"optimizing an unonstrained problem where the �t-ness funtion is omposed from these penalties. Inthis approah any diret onstraint handling (e.g. spe-i� onstraint respeting mutation or rossover op-erators, or repair mehanisms �xing some onstraintviolations) is absent, making it very transparent andgeneral.The SAW proedure is an add-on to this generalsheme to boost performane (to minimize the penal-ties more e�etively): It adaptively hanges the om-position of the �tness funtion during the searh pro-ess. Here we experiment with the SAW EA with twopenalty systems (penalizing the violated onstraintsvs. penalizing the wrongly instantiated variables), dif-ferent re�nement funtions, and deay funtions, so asto give a omplete overview of di�erent variations onthis algorithm.Another novelty in the present work is the usage ofa reently proposed problem instane generator. Asshown by Ahlioptas et al. in [1℄, the widely appliedCSP generators (muh used in EA researh) have seri-ous de�ienies. Most importantly, the generated in-stanes tend to be asymptotially unsolvable, prevent-ing a sound study of algorithmi behavior around thephase transition. The proposed alternative ures thisproblem and has an additional nie feature: It allowsone single hardness parameter, making the presenta-

tion (and interpretation) of results muh easier.The paper is organized as follows. Setion 2 will de-�ne the notation and terminology we use for desrib-ing CSPs and in setion 4 we will examine furtherhow CSPs are generated using model E. In setion4.1 we will disuss how the standard stepwise adap-tion of weights method will work on these CSPs whilein setion 4.2 the re�ning funtion and the adaptationmehanisms are disussed. In setion 4.3 the deaymehanisms are disussed, followed by the experimen-tal results in setion 5. Conlusions are given in setion6.2 NOTATION ANDTERMINOLOGYA onstraint network onsists of a set of variablesX1; : : : ; Xn with respetive domains D1; : : : ; Dn, anda set of onstraints C. The Cartesian produt of setsD1�� � ��Dn is alled the searh spae and denoted byS. For 2�k�n, a onstraint j1;:::;jk 2 C; j = 1; : : : ;mis a subset of Dj1� � � � �Djk , where the j1; : : : ; jkare distint. We say that j1;:::;jk is of arity k andthat it bounds the variables Xj1 ; : : : ; Xjk and thatCj1;:::;jk is the set of onstraints that bound variablesX1; : : : ; Xk1 For a given onstraint network, the Con-straint Satisfation Problem (CSP) asks for all then-tuples (d1; : : : ; dn) of values suh that di 2 Di,i = 1; : : : ; n, and for every j1;:::;jk 2 C, (dj1 ; : : : ; djk) =2j1;:::;jk ; j = 1; : : : ;m. Suh an n-tuple s 2 S is alleda solution of the CSP. The deision version of the CSPis determining if a solution exists.For an instane � of CSP with n variables, its on-straint hypergraph G� has n verties v1; : : : ; vn, whihorrespond to the variables of � and it ontainsa hyperedge fvj1 ; : : : ; vjkg if and only if there ex-ists a onstraint of arity k that bounds the vari-ables Xj1 ; : : : ; Xjk . The following onvenient graph-theoreti representation of a CSP instane � will beused; the inompatibility hypergraph of �, C�, is an n-partite hypergraph of whih the ith part orrespondsto variable Xi of � whih has exatly jDij verties,one for eah value in Di. In C� there exists a hyper-edge fvj1 ; : : : ; vjkg, if and only if the orrespondingvalues dj1 2 Dj1 , dj2 2 Dj2 ; : : : ; djk 2 Djk are in (notallowed by) some onstraint that bounds the orre-sponding variables. Hene, the deision version of CSPis equivalent to asking if there exists a set of verties inC ontaining exatly one vertex from eah part whilenot `ontaining' any hyperedge, i.e., if there exists an1We use shorthand j and Cj if it annot lead to onfu-sion.

independent set with one vertex from eah part2. Wede�ne the Boolean funtion � on the searh spae S asthe feasibility ondition, with �(s) = true if and only ifs is a solution of S, while the set fs 2 Sj�(s) = truegwill be alled the feasible searh spae.Note that for the sake of simpliity we study binaryCSPs where all onstraints have arity k = 2 (boundtwo variables) and where all the variable domains on-tain the same number of values D. We adhere to thissimpli�ation beause it restrits experimental om-plexity and every CSP of arity larger than two has anequivalent binary CSP ([17℄).3 GENERATING CSPSIn [1℄, Ahlioptas et al. show that the so-alled ModelsA to D are unsuitable for the study of phase transitionand threshold phenomena suh as CSPs. This is be-ause the instanes they asymptotially generate havealmost ertainly no solutions.A general framework for these models, presented in[15, 16℄ works in two steps:Step 1 Either (i) eah one of the �n2� edges is seletedto be in G independently of all other edges with prob-ability p1 (onstraint density), or (ii) we uniformlyselet a random set of edges of size p1�n2�.Step 2 Either (i) for every edge of G eah one of theD2 edges in C is seleted with probability p2 (onstrainttightness), or (ii) for every edge of G we uniformlyselet a random set of edges in C of size p2D2Combining the options for the two sets, we get fourslightly di�erent models for generating random CSPs,in partiular, in the terminology used in [16℄, if bothStep 1 and 2 are done with option (i), we get ModelA, while if both steps are done with option (ii), we getModel B.As Ahlioptas et al. show in [1℄ Model A generates al-most ertainly unsatis�able instanes for every p2 6= 0,while Model B generates almost ertainly unsatis�-able instanes for every p2 � 1=D (analogously forthe other two models). They further show that onesoure of this asymptoti insolubility is the appear-ane of `awed' values, i.e., values that are inompati-ble with all the values of some other variable. A num-ber of experimental studies, as reported in [14℄ haveavoided this pitfall, but many others did not.2The supersript from both the onstraint and the in-ompatibility hypergraph will be omitted when it is learfrom the ontext what instane is referred too

In the same paper, Ahlioptas at al., proposed an al-ternative model for generating random CSP instanes(Model E), whih does not su�er from the de�ieniesunderlying the other models. This model resemblesthe model used for generating random boolean formu-las for the satis�ability problem and the onstraintsit generates are similar to the `nogoods' proposed byWilliams and Hogg ([18℄). This model is de�ned as:De�nition 1 C� is a random n-partite graph with Dverties in eah part onstruted by uniformly, inde-pendently and with repetitions seleting m = p �nk�Dkhyperedges out of the �nk�Dk possible ones, with k = 2for binary onstraint networks. Also, let r = m=n de-note the ratio of the seleted edges to the number ofvariables.Suh a model an be fully spei�ed as E(n;m;D; k),where n is the number of variables, m is the number ofonstraints, D is the number of values in eah domainand k is the arity of eah onstraint. Informally oneould say that Model E works by hoosing uniformly,independently and with repetitions onits betweentwo values of two di�erent variables. The paper on-tinues by stating that for a random instane � gen-erated using Model E, if we have r < 1=2, � almostertainly has a solution and it is possible to bound theunderonstrained and overonstrained regions.It was known for Model A to D, that, when oneof their parameters was varied, the generated CSPwould exhibit a so alled phase transition, whereproblems hange from being relatively easy to solveto being very easy to prove unsolvable. The regionwhere the probability that a problem is solublehanges from almost zero to almost one is gener-ally indiated as the mushy region. In the mushyregion, problems are in general diÆult to solve orprove unsolvable and therefore of partiular interestwhen omparing di�erent algorithms for eÆieny.In [1℄ Ahlioptas et al. show that Model E alsoexhibits a phase transition when one of its variablesis hanged and, they give bounding formulas for themushy region. In this paper, all CSP instanes aregenerated using Model E with n = 15 variables,domain size D = 15, k = 2, probabilities from the setf0:20; 0:22; 0:24; 0:26; 0:28; 0:30; 0:32; 0:34; 0:36; 0:38g,and the orresponding values of m (see De�nition 1).This puts all generated instanes between the under-and overonstrained regions.

4 ADAPTIVE FITNESSFUNCTIONS FOR CSPS4.1 STANDARD STEPWISE ADAPTIONOF WEIGHTSThe Stepwise Adaptation of Weights (SAW) meha-nism has been introdued by Eiben and van der Hauw[7, 8℄. In several omparisons the SAW EA proved tobe a superior tehnique for solving spei� CSPs [9, 2℄.The basi idea behind the SAWmehanism is that on-straints that are not satis�ed after a ertain numberof searh steps (i.e. �tness evaluations), must be hardand therefore be given more attention. This is real-ized by using a weighted sum of onstraint violationsas �tness funtion and varying these weights to diretthe searh. Tehnially, all weights are given an initialvalue of 1 and re-setting them happens by adding avalue �w after a ertain prede�ned number of evalu-ations. The best individual of the given population isused as referene for weight updates. Constraints thatare violated in the urrent-best-individual are given ahigher weight during an update operation.The two penalty systems we ompare here di�er inthe elementary penalty terms the �tness funtion isomposed from. Namely, these terms an be based on:1. onstraints that are violated, or on2. variables that are wrongly instantiated.These two mehanisms an formally be desribed asfollows: f1(s) = mXi=1 wi � �(s; i); (1)where �(s; i) = � 1 if s violates i0 otherwiserespetively f2(s) = nXi=1 wi � �(s; Ci); (2)where�(s; Ci) = � 1 if s violates at least one 2 Ci0 otherwiseObviously, for the above funtions f1; f2 and for eahs 2 S we have that �(s) = true if and only if fi(s) = 0with i 2 f1; 2g.The orresponding adaption shemes, that is, weightupdate mehanisms, are as follows:wi wi + �(X�; i) for i 2 f1; : : : ;mg (SAWon)

respetivelywi wi + �(X�; Ci) for i 2 f1; : : : ; ng (SAWvar)with X� denoting a variable in the best individual inthe population found so far.4.2 REFINING FUNCTIONSIn [12℄ and [13℄, Gottlieb and Voss have shown that re-�ning funtions improve the performane of SAW for3-SAT problems. Here we investigate if using thesere�ning funtions also improves performane on ran-domly generated binary CSPs. Extending the SAWEA with a re�ning funtion means to add a term��r(X) to the �tness funtions leading to the followingde�nitions:f3(s) = mXi=1 wi � �(s; i) + � � r(X) (3)respetivelyf4(s) = nXi=1 wi � �(s; Ci) + � � r(X) (4)Adding � � r(X) to the �tness funtion makes it pos-sible to di�erentiate between individuals having thesame basi �tness value. Note that the re�ning fun-tion values are limited to the range [0; 1). By using are�ning fator �, the inuene of the re�ning funtionon the �tness funtion an be tuned. The original def-inition of the re�ning funtion used in [13℄ is adaptedto CSPs as follows:r(X) = 12 1 + Pnj=1K(Xj) � vj1 +Pnj=1 jvj j !withK(Xj) = � 1 ifXj is not ausing a violation inX��1 otherwisewhere weight vj belongs to variable Xj . Note thatr(X) always adds a term onerning the wrongly in-stantiated variables and we get two separate sets ofweights. In ase of f1 (f3) we get weights wi withi 2 f1; : : : ;mg for the onstraints and weights vj withj 2 f1; : : : ; ng for the variables. In ase of f2 (f4)both sets of weights wi with i 2 f1; : : : ; ng and vjwith j 2 f1; : : : ; ng onern the variables.In both ases the update rule SAWon, respetivelySAWvar an be used for the w's and we introdue anew rule for the v's. The values for the v's are alsoinitiated with 1 and updated simultaneously with thew's.

Following [13℄ we, in fat, introdue two di�erent up-date rules for the weights in the re�nement funtion.The rule AW1 is a problem-independent version whihreets a moderate adjustment of the weights towardsthe omplement of the urrent best individual X�,vj vj �K(x�j) for j 2 f1; : : : ; ng (AW1)The rule AW2 is a problem-dependent version thatuses CSP spei� knowledge in Cl:vj vj � nXl=1K(x�l)j Cl(x�l)j j 2 f1; : : : ; ng (AW2)AW2 takes into aount that it is neessary to hangea variable that has an unsatis�ed onstraint that bindsit in order to improve the urrent solution and heneguides the EA towards solutions satisfying yet unsat-is�ed onstraints. We denote the SAW algorithm thatuses f3 with update rule AW1 as SAWon;ref;AW1and if it uses f4 with update rule AW1 we useSAWvar;ref;AW1. We replae AW1 subsript withAW2 if the SAW algorithm uses the AW2 update rule.4.3 DECAYIn [11℄, Frank showed that WGSAT, a loal searhalgorithm using lause weights, is suseptible to largeabsolute weights and onvergene of relative weights.To overome this problem he suggested a deay fator.A deay fator yields a hane to redue high absoluteweights, whih allows a orretion of inappropriatelyadapted weights. Given the deay fator � 2 [0; 1℄, weonsider the deayed adaption shemes:wi �wi + �(X�; i) (SAWvar;d)wi �wi + �(X�; Ci) (SAWon;d)vj �vj �K(x�j) (AW1d)vj �vj �Pnl=1K(x�l)j Cl(x�l)j (AW2d)As already observed for WGSAT in [11℄ and for SAWin [13℄, for 3-SAT, the good �-values are very lose to 1.The same behavior for large deay rates ourred us-ing the SAW mehanisms for CSPs as it did for 3-SAT.If the deay rate was too large (� too small, approxi-mately � � 0:9), it destroyed muh of the informationlearned during the searh proess.5 EXPERIMENTAL RESULTSWe used a steady-state evolutionary algorithm withorder-based representation that proved to be the bestoption in [10℄. Here an individual is a permutation of

the variables and a deoder is used to assign domainvalues to eah variable in the order they appear ina given permutation. The deoder sequentially takesvariables from the permutation and tries to instanti-ate it with values that do not violate any onstraintsthat bind already instantiated variables. If the deoderdoes not �nd suh a value, the variable is left unin-stantiated. (Tehnially, it is instantiated to a speialvalue indiating a onit.) Earlier work has shownthat small populations produe the best performaneand that for CSPs a population size of just 1 is optimal.Therefore, we use a (1 + 1) style EA and no rossoveroperation is needed. The mutation operator is a simpleswap operator, whih randomly hooses one variablein the given permutation and swaps it with anotherrandomly hosen variable. The initial population isgenerated randomly and the weights are adapted eahtime 250 evaluations have been done. (Preliminary ex-periments with di�erent adaption periods showed lit-tle di�erenes in performane; 250 gave just slightlybetter results than other values.) After a maximumof 100,000 evaluations, the runs were terminated. Asmentioned in setion 3, we used a set of 10 di�erentprobabilities for the Model E CSP generator. Witheah of these probabilities we generated 25 instanesand performed 10 runs over eah instane, resulting in250 runs for every p value for eah algorithm variant.We used two measures of omparison for the algo-rithms; �rst Suess Rate (SR), whih denotes theperentage of the runs that were ompleted with a so-lution3; seond, Average number of Evaluations to aSolution (AES). Note that the last measure is only de-�ned when a solution was found and that, although itseems a `fair' measure, it ould be misleading as someEAs use `hidden labor' whih ould be invisible to themeasure. An example of hidden labor ould be someof the work done in (AW2), where problem-spei�knowledge was used in the �tness funtion.We experimented with SAW algorithms using the dif-ferent �tness funtions (f1; f2; f3; f4), using the twore�ning funtions (AW1 and AW2) for �tness fun-tions f3 and f4 and using the deay mehanisms.The results are depited in �gure 1, the orrespondingnumerial �gures are given in table 1. These outomesshow that there is little di�erene between the SAWalgorithms that onsider either onstraints or variables(�tness funtions f1 or f2). It might be observed thatSAWvar has a small advantage in Average Evaluationsto Solution (AES) but when omparing Suess Rate(SR), the di�erenes are small. In instanes with prob-3We use the deimal notation of a perentage: 10% =0:10

SAWonSAWvar Probability
SR

0.380.360.340.320.30.280.260.240.220.2

10.80.60.40.20

SAWonSAWvar

Probability
AES

0.380.360.340.320.30.280.260.240.220.2

300002500020000150001000050000Figure 1: SR and AES graphs for SAWvar and SAWonability 0:34 and 0:38 SAWvar has a better SR, whilein instanes with probability 0:36 SAWon solved moreinstanes. Other instanes were solved by both algo-rithms equally well (SR) and until p = 0:24 the speed�gures (AES) are also the same. The standard devi-ations of the averages for AES (not presented here)were also so lose that no further distintion ould bemade.The little di�erene between trying to solve CSPs witheither penalizing variables or onstraints is somewhatsurprising if we onsider that there are muh moreonstraints than variables. This implies that SAWonworking with the �tness funtion f1 has more infor-mation, but apparently f2 is already \strong" enough.SAWvar SAWonSR AES SR AES0.20 1 9.936 1 9.9360.22 1 17.304 1 17.3040.24 1 45.632 1 45.6320.26 1 104.448 1 106.3360.28 1 258.28 1 311.0680.30 1 870.556 1 1023.660.32 1 2984.63 1 3322.180.34 0.816 13962.6 0.808 15212.30.36 0.396 21683.3 0.424 22480.30.38 0.124 18968.3 0.108 12332.2Table 1: Numerial results for SAWvar and SAWonThe results of the experiments with the ex-tended SAW mehanism are given in table 2 forSAWvar;ref;AW1 and SAWon;ref;AW1 and in table 3for SAWvar;ref;AW2 and SAWon;ref;AW2. The �guresshow that the addition of the re�ning funtion AW1produed no improvement at all. Experiments werealso performed with varying re�nement fators, evenup to values where the performane of the algorithms

began to deteriorate. Di�erenes between the re�ningfuntions (AW1 and AW2) are also small, whih in-diates that adding extra domain information, in theform of Cl, also did not improve searh performane.This is also surprising beause one would expet to in-rease searh speed when inorporating extra domainknowledge. This might ome at the ost of prematureonvergene beause of searhing too greedilySAWvar;ref;AW1 SAWon;ref;AW1SR AES SR AES0.20 1 9.936 1 9.9360.22 1 17.304 1 17.3040.24 1 45.632 1 45.6320.26 1 104.448 1 106.3360.28 1 258.28 1 311.0680.30 1 870.556 1 1023.660.32 1 2984.63 1 3322.180.34 0.816 13962.6 0.808 15212.30.36 0.396 21683.3 0.424 22480.30.38 0.124 18968.3 0.108 12332.3Table 2: Results for SAWvar;ref;AW1 andSAWon;ref;AW1SAWvar;ref;AW2 SAWon;ref;AW2SR AES SR AES0.20 1 9.936 1 9.9360.22 1 17.304 1 17.3040.24 1 45.632 1 45.6320.26 1 104.448 1 104.5240.28 1 258.28 1 252.9960.30 1 870.556 1 1048.480.32 0.996 2984.63 1 3430.640.34 0.816 13962.6 0.840 16487.50.36 0.396 21683.3 0.368 20957.40.38 0.124 18968.3 0.116 23669.4Table 3: Results for SAWvar;ref;AW2 andSAWon;ref;AW2When interpreting these results, reall that the re�n-ing funtion was designed to distinguish between indi-viduals having the same basi �tness value. The lakof improvement when using re�ning funtions seems toimply that in ase of binary CSPs, the basi funtionsf1 and f2 ontain suÆient information to guide thesearh suessfully.Experiments using deay fator for solving SAT prob-lems showed that values around � = 1 work best, f.

[11, 13℄. Our studies with random binary CSPs alsoindiated the same. However, we also found that ap-plying deay to the SAW tehnique did not hange al-gorithm performane signi�antly when � values weretaken from the set f0:95; 0:96; 0:97; 0:98; 0:99; 1:00g.Note that � = 1:00 amounts to no deay. Thereforethis observation implies that algorithm variants with-out deay and with deay using a good � value are notperforming di�erently.Figure 2 gives an illustration by showing typial runsusing di�erent deay fators. These runs were per-formed on instanes generated with probability 0:32.Note that the �gure only presents the searh speedresults (AES). The suess rates are not given be-ause all algorithms solved all instanes, exept forSAWvar;ref;AW1;d with deay fator 0:98 whih solved096% of the instanes (a SR of = 0:96). The urves in-diate a di�erene between SAWvar;ref and the otheralgorithms. Namely, SAWvar;ref using either AW1 orAW2 seems to improve when swithing o� deay, i.e.for � = 1:0. For all other algorithms a deay fatorhas no signi�ant inuene on the searh speed. Reallthat the deay of weights in the SAW �tness funtionwas added to atively suppress the growth of weightvalues. These results indiate that suh a growth {identi�ed as dangerous in related �elds, f. [11, 13℄,{ either does not our or is not harmful in ase ofrandom binary CSPs.
SAWon;ref;AW2;dSAWvar;ref;AW2;dSAWon;ref;AW1;dSAWvar;ref;AW1;dSAWon;dSAWvar;d

Deay Fator
AES

10.990.980.970.960.95

24002200200018001600140012001000800600Figure 2: graphs of SAWvar;d and SAWon;d with dif-ferent deay fators. p = 0:32, � = 250, re�nement-fator � = 406 CONCLUSIONSThe researh presented in this paper had a twofoldobjetive: presenting and illustrating a reently pro-posed problem instane generator for binary CSPs andomparing a number of variants and extensions of theSAW tehnique. In partiular, we used a CSP gener-ator based on the so-alled model E in [1℄. We foundthat the phase transition e�ets were learly observ-

able and by the use of one single hardness parameterthe results were easier to present { and to interpret {than in ase of the formerly used two-parameter-basedgenerators [3, 4, 5, 10℄. The new generator deserves areommendation for further experimental researh.As for the algorithm variants, we experimented withthe unextended version of the SAW tehnique withtwo penalty systems: one alulated over the variablesand one alulated over the onstraints. They turnedout to yield very similar performane, whih is sur-prising. The onstraint based �tness funtion, afterall, is based on more information as there are usuallymore onstraints than variables and one would expetto improve a searh algorithm when using more infor-mation.Inspired by related work on satis�ability problems wehave also experimented with two extensions of SAW-ing. In partiular, we tried re�ning funtions and adeay mehanism. A re�ning funtion � � r(X) addedto the �tness funtion makes it possible to di�erenti-ate between individuals having the same basi �tnessvalue. We found that the appliation of re�ning fun-tions did not improve performane and that varyingthe re�ning fator � did not have any inuene onperformane. These results seem to imply that in aseof binary CSPs the basi funtions f1 and f2 ontainsuÆient information to guide the searh suessfully.The addition of the deay fator did not improve theperformane in general either, neither for the origi-nal SAW tehniques, nor for the SAW tehnique witha re�ning funtion. In fat it had a negative e�eton SAWvar;ref . This might be the onsequene ofthe relatively small problem size, where the aumu-lation of large relative weights stays within limits andthus does not need a ounterfore. This �nding pointsto the same diretion as our onlusion about re�ne-ment funtions: the basi SAW mehanism is powerfulenough to solve random binary CSPs.All in all, the omparison of the algorithm variantsshows a surprising, but pleasant piture: The simplestsetup (SAW with variable related penalties, no exten-sions) is as good or better than any of the more sophis-tiated variants. Although urrent and future researhwill undoubtfully re�ne this piture, for the time beingthis is good news for algorithm designers.Further researh is arried out with new types of re�n-ing funtions, problems with varying sizes (sale-up),and larger population sizes.

Referenes[1℄ D. Ahlioptas, L.M. Kirousis, E. Kranakis,D. Krizan, M.S.O. Molloy, and Y.C. Stama-tiou. Random onstraint satisfation: A moreaurate piture. In G. Smolka, editor, Prini-ples and Pratie of Constraint Programming |CP97, number 1330 in Leture Notes in ComputerSiene, pages 107{120, Berlin, 1997. Springer-Verlag.[2℄ Th. B�ak, A.E. Eiben, and M.E. Vink. A superiorevolutionary algorithm for 3-SAT. In V.W. Porto,N. Saravanan, D. Waagen, and A.E. Eiben, edi-tors, Proeedings of the 7th Annual Conferene onEvolutionary Programming, number 1477 in Le-ture Notes in Computer Siene, pages 125{136,Berlin, 1998. Springer-Verlag.[3℄ J. Bowen and G. Dozier. Solving onstraintsatisfation problems using a geneti/systematisearh hybride that realizes when to quit. InL.J. Eshelman, editor, Proeedings of the 6th In-ternational Conferene on Geneti Algorithms,pages 122{129. Morgan Kaufmann Publishers,In., 1995.[4℄ G. Dozier, J. Bowen, and D. Bahler. Solving smalland large onstraint satisfation problems using aheuristi-based mirogeneti algorithm. In Pro-eedings of the 1st IEEE Conferene on Evolu-tionary Computation, pages 306{311. IEEE Com-puter Soiety Press, 1994.[5℄ G. Dozier, J. Bowen, and A. Homaifar. Solvingonstraint satisfation problems using hybrid evo-lutionary searh. Transations on EvolutionaryComputation, 2(1):23{33, 1998.[6℄ A.E. Eiben, Th. B�ak, M. Shoenauer, and H.-P. Shwefel, editors. Proeedings of the 5th Con-ferene on Parallel Problem Solving from Nature,number 1498 in Leture Notes in Computer Si-ene, Berlin, 1998. Springer-Verlag.[7℄ A.E. Eiben and J.K. van der Hauw. Solving 3-SAT with adaptive Geneti Algorithms. In Pro-eedings of the 4th IEEE Conferene on Evolu-tionary Computation, pages 81{86. IEEE Com-puter Soiety Press, 1997.[8℄ A.E. Eiben and J.K. van der Hauw. Adaptivepenalties for evolutionary graph-oloring. In J.-K.Hao, E. Lutton, E. Ronald, M. Shoenauer, andD. Snyers, editors, Arti�ial Evolution '97, num-ber 1363 in Leture Notes in Computer Siene,pages 95{106, Berlin, 1998. Springer-Verlag.

[9℄ A.E. Eiben, J.K. van der Hauw, and J.I.van Hemert. Graph oloring with adaptiveevolutionary algorithms. Journal of Heuristis,4(1):25{46, 1998.[10℄ A.E. Eiben, J.I. van Hemert, E. Marhiori, andA.G. Steenbeek. Solving binary onstraint sat-isfation problems using evolutionary algorithmswith an adaptive �tness funtion. In Eiben et al.[6℄, pages 196{205.[11℄ J. Frank. Learning short-term weights for GSAT.Tehnial report, University of California atDavis, ot 1996.[12℄ J. Gottlieb and N. Voss. Improving the perfor-mane of evolutionary algorithms for the satis�-ability problem by re�ning funtions. In Eibenet al. [6℄.[13℄ J. Gottlieb and N. Voss. Adaptive �tness fun-tions for the satis�ability problem. In M. Shoe-nauer, K. Deb, G. Rudolph, X. Yao, E. Lut-ton, J.J. Merelo, and H.-P. Shwefel, editors, Pro-eedings of the 6th Conferene on Parallel Prob-lem Solving from Nature, number 1917 in Le-ture Notes in Computer Siene, Berlin, 2000.Springer-Verlag.[14℄ E. MaIntyre, P. Prosser, B.M. Smith, andT. Walsh. Random onstraint satisfation: theorymeets pratie. In M. Maher and J.-F. Puget, ed-itors, Priniples and Pratie of Constraint Pro-gramming | CP98, pages 325{339, Berlin, 1998.Springer-Verlag.[15℄ P. Prosser. An empirial study of phase transi-tions in binary onstraint satisfation problems.Journal of Arti�ial Intelligene, 81:81{109, 1996.[16℄ B.M. Smith and M.E. Dyer. Loating the phasetransition in binary onstraint satisfation prob-lems. Journal of Arti�ial Intelligene, 81(1-2):155{181, 1996.[17℄ E.P.K. Tsang. Foundations of Constraint Satis-fation. Aademi Press Limited, 1993.[18℄ C.P. Williams and T. Hogg. Exploiting the deepstruture of onstraint problems. Journal of Ar-ti�ial Intelligene, 70:73{117, 1994.

