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tAdaptive �tness fun
tions have led to verysu

essful evolutionary algorithms (EA) forvarious types of 
onstraint satisfa
tion prob-lems (CSPs). In this paper we 
onsiderone parti
ular �tness fun
tion adaptationme
hanism, the so 
alled Stepwise Adaptionof Weights (SAW). We 
ompare algorithmvariants in
luding two penalty systems andwe experiment with extensions of the SAWme
hanism utilizing a re�nement fun
tionand a de
ay fun
tion. Experiments are ex-e
uted on binary CSP instan
es generatedby a re
ently proposed method (method E).This new method for generating problem in-stan
es allows one single hardness parameterand is well suited to study algorithmi
 behav-ior around the phase transition. The resultsshow that the original version of the SAWme
hanism is very robust and has a 
ompara-ble or better performan
e than the extendedSAW me
hanisms.1 INTRODUCTIONInformally, a 
onstraint satisfa
tion problem (CSP)
onsists of �nding an assignment of values to vari-ables in su
h a way that the restri
tions imposed bythe given set of 
onstraints are satis�ed. Constraintsatisfa
tion is a fundamental topi
 in arti�
ial intel-ligen
e with great pra
ti
al and theoreti
al relevan
e.On the pra
ti
al side, CSPs have relevant appli
ationsin planning, default reasoning, s
heduling, et
. and agreat deal of pra
ti
al problems are 
onstrained. The-oreti
ally, CSPs are, in general, 
omputationally in-tra
table (NP-hard) thereby forming a big 
hallengeto algorithm designers.

Evolutionary algorithms are known for their good per-forman
e in the �eld of optimization. Constraint han-dling, however, is not straightforward in an EA as thetraditional sear
h operators, mutation and re
ombi-nation do not heed 
onstraints (or their violation).Nevertheless, there is a growing body of literatureon applying EAs to various CSPs, su
h as graph-
oloring, satis�ability, or randomly generated binaryCSPs. One resear
h line is based on a pure penaltyapproa
h, where the evolutionary algorithm handlesall 
onstraints indire
tly. That is, all 
onstraint viola-tions are turned into penalties and the EA is \only"optimizing an un
onstrained problem where the �t-ness fun
tion is 
omposed from these penalties. Inthis approa
h any dire
t 
onstraint handling (e.g. spe-
i�
 
onstraint respe
ting mutation or 
rossover op-erators, or repair me
hanisms �xing some 
onstraintviolations) is absent, making it very transparent andgeneral.The SAW pro
edure is an add-on to this generals
heme to boost performan
e (to minimize the penal-ties more e�e
tively): It adaptively 
hanges the 
om-position of the �tness fun
tion during the sear
h pro-
ess. Here we experiment with the SAW EA with twopenalty systems (penalizing the violated 
onstraintsvs. penalizing the wrongly instantiated variables), dif-ferent re�nement fun
tions, and de
ay fun
tions, so asto give a 
omplete overview of di�erent variations onthis algorithm.Another novelty in the present work is the usage ofa re
ently proposed problem instan
e generator. Asshown by A
hlioptas et al. in [1℄, the widely appliedCSP generators (mu
h used in EA resear
h) have seri-ous de�
ien
ies. Most importantly, the generated in-stan
es tend to be asymptoti
ally unsolvable, prevent-ing a sound study of algorithmi
 behavior around thephase transition. The proposed alternative 
ures thisproblem and has an additional ni
e feature: It allowsone single hardness parameter, making the presenta-



tion (and interpretation) of results mu
h easier.The paper is organized as follows. Se
tion 2 will de-�ne the notation and terminology we use for des
rib-ing CSPs and in se
tion 4 we will examine furtherhow CSPs are generated using model E. In se
tion4.1 we will dis
uss how the standard stepwise adap-tion of weights method will work on these CSPs whilein se
tion 4.2 the re�ning fun
tion and the adaptationme
hanisms are dis
ussed. In se
tion 4.3 the de
ayme
hanisms are dis
ussed, followed by the experimen-tal results in se
tion 5. Con
lusions are given in se
tion6.2 NOTATION ANDTERMINOLOGYA 
onstraint network 
onsists of a set of variablesX1; : : : ; Xn with respe
tive domains D1; : : : ; Dn, anda set of 
onstraints C. The Cartesian produ
t of setsD1�� � ��Dn is 
alled the sear
h spa
e and denoted byS. For 2�k�n, a 
onstraint 
j1;:::;jk 2 C; j = 1; : : : ;mis a subset of Dj1� � � � �Djk , where the j1; : : : ; jkare distin
t. We say that 
j1;:::;jk is of arity k andthat it bounds the variables Xj1 ; : : : ; Xjk and thatCj1;:::;jk is the set of 
onstraints that bound variablesX1; : : : ; Xk1 For a given 
onstraint network, the Con-straint Satisfa
tion Problem (CSP) asks for all then-tuples (d1; : : : ; dn) of values su
h that di 2 Di,i = 1; : : : ; n, and for every 
j1;:::;jk 2 C, (dj1 ; : : : ; djk ) =2
j1;:::;jk ; j = 1; : : : ;m. Su
h an n-tuple s 2 S is 
alleda solution of the CSP. The de
ision version of the CSPis determining if a solution exists.For an instan
e � of CSP with n variables, its 
on-straint hypergraph G� has n verti
es v1; : : : ; vn, whi
h
orrespond to the variables of � and it 
ontainsa hyperedge fvj1 ; : : : ; vjkg if and only if there ex-ists a 
onstraint of arity k that bounds the vari-ables Xj1 ; : : : ; Xjk . The following 
onvenient graph-theoreti
 representation of a CSP instan
e � will beused; the in
ompatibility hypergraph of �, C�, is an n-partite hypergraph of whi
h the ith part 
orrespondsto variable Xi of � whi
h has exa
tly jDij verti
es,one for ea
h value in Di. In C� there exists a hyper-edge fvj1 ; : : : ; vjkg, if and only if the 
orrespondingvalues dj1 2 Dj1 , dj2 2 Dj2 ; : : : ; djk 2 Djk are in (notallowed by) some 
onstraint that bounds the 
orre-sponding variables. Hen
e, the de
ision version of CSPis equivalent to asking if there exists a set of verti
es inC 
ontaining exa
tly one vertex from ea
h part whilenot `
ontaining' any hyperedge, i.e., if there exists an1We use shorthand 
j and Cj if it 
annot lead to 
onfu-sion.

independent set with one vertex from ea
h part2. Wede�ne the Boolean fun
tion � on the sear
h spa
e S asthe feasibility 
ondition, with �(s) = true if and only ifs is a solution of S, while the set fs 2 Sj�(s) = truegwill be 
alled the feasible sear
h spa
e.Note that for the sake of simpli
ity we study binaryCSPs where all 
onstraints have arity k = 2 (boundtwo variables) and where all the variable domains 
on-tain the same number of values D. We adhere to thissimpli�
ation be
ause it restri
ts experimental 
om-plexity and every CSP of arity larger than two has anequivalent binary CSP ([17℄).3 GENERATING CSPSIn [1℄, A
hlioptas et al. show that the so-
alled ModelsA to D are unsuitable for the study of phase transitionand threshold phenomena su
h as CSPs. This is be-
ause the instan
es they asymptoti
ally generate havealmost 
ertainly no solutions.A general framework for these models, presented in[15, 16℄ works in two steps:Step 1 Either (i) ea
h one of the �n2� edges is sele
tedto be in G independently of all other edges with prob-ability p1 (
onstraint density), or (ii) we uniformlysele
t a random set of edges of size p1�n2�.Step 2 Either (i) for every edge of G ea
h one of theD2 edges in C is sele
ted with probability p2 (
onstrainttightness), or (ii) for every edge of G we uniformlysele
t a random set of edges in C of size p2D2Combining the options for the two sets, we get fourslightly di�erent models for generating random CSPs,in parti
ular, in the terminology used in [16℄, if bothStep 1 and 2 are done with option (i), we get ModelA, while if both steps are done with option (ii), we getModel B.As A
hlioptas et al. show in [1℄ Model A generates al-most 
ertainly unsatis�able instan
es for every p2 6= 0,while Model B generates almost 
ertainly unsatis�-able instan
es for every p2 � 1=D (analogously forthe other two models). They further show that onesour
e of this asymptoti
 insolubility is the appear-an
e of `
awed' values, i.e., values that are in
ompati-ble with all the values of some other variable. A num-ber of experimental studies, as reported in [14℄ haveavoided this pitfall, but many others did not.2The supers
ript from both the 
onstraint and the in-
ompatibility hypergraph will be omitted when it is 
learfrom the 
ontext what instan
e is referred too



In the same paper, A
hlioptas at al., proposed an al-ternative model for generating random CSP instan
es(Model E), whi
h does not su�er from the de�
ien
iesunderlying the other models. This model resemblesthe model used for generating random boolean formu-las for the satis�ability problem and the 
onstraintsit generates are similar to the `nogoods' proposed byWilliams and Hogg ([18℄). This model is de�ned as:De�nition 1 C� is a random n-partite graph with Dverti
es in ea
h part 
onstru
ted by uniformly, inde-pendently and with repetitions sele
ting m = p �nk�Dkhyperedges out of the �nk�Dk possible ones, with k = 2for binary 
onstraint networks. Also, let r = m=n de-note the ratio of the sele
ted edges to the number ofvariables.Su
h a model 
an be fully spe
i�ed as E(n;m;D; k),where n is the number of variables, m is the number of
onstraints, D is the number of values in ea
h domainand k is the arity of ea
h 
onstraint. Informally one
ould say that Model E works by 
hoosing uniformly,independently and with repetitions 
on
i
ts betweentwo values of two di�erent variables. The paper 
on-tinues by stating that for a random instan
e � gen-erated using Model E, if we have r < 1=2, � almost
ertainly has a solution and it is possible to bound theunder
onstrained and over
onstrained regions.It was known for Model A to D, that, when oneof their parameters was varied, the generated CSPwould exhibit a so 
alled phase transition, whereproblems 
hange from being relatively easy to solveto being very easy to prove unsolvable. The regionwhere the probability that a problem is soluble
hanges from almost zero to almost one is gener-ally indi
ated as the mushy region. In the mushyregion, problems are in general diÆ
ult to solve orprove unsolvable and therefore of parti
ular interestwhen 
omparing di�erent algorithms for eÆ
ien
y.In [1℄ A
hlioptas et al. show that Model E alsoexhibits a phase transition when one of its variablesis 
hanged and, they give bounding formulas for themushy region. In this paper, all CSP instan
es aregenerated using Model E with n = 15 variables,domain size D = 15, k = 2, probabilities from the setf0:20; 0:22; 0:24; 0:26; 0:28; 0:30; 0:32; 0:34; 0:36; 0:38g,and the 
orresponding values of m (see De�nition 1).This puts all generated instan
es between the under-and over
onstrained regions.

4 ADAPTIVE FITNESSFUNCTIONS FOR CSPS4.1 STANDARD STEPWISE ADAPTIONOF WEIGHTSThe Stepwise Adaptation of Weights (SAW) me
ha-nism has been introdu
ed by Eiben and van der Hauw[7, 8℄. In several 
omparisons the SAW EA proved tobe a superior te
hnique for solving spe
i�
 CSPs [9, 2℄.The basi
 idea behind the SAWme
hanism is that 
on-straints that are not satis�ed after a 
ertain numberof sear
h steps (i.e. �tness evaluations), must be hardand therefore be given more attention. This is real-ized by using a weighted sum of 
onstraint violationsas �tness fun
tion and varying these weights to dire
tthe sear
h. Te
hni
ally, all weights are given an initialvalue of 1 and re-setting them happens by adding avalue �w after a 
ertain prede�ned number of evalu-ations. The best individual of the given population isused as referen
e for weight updates. Constraints thatare violated in the 
urrent-best-individual are given ahigher weight during an update operation.The two penalty systems we 
ompare here di�er inthe elementary penalty terms the �tness fun
tion is
omposed from. Namely, these terms 
an be based on:1. 
onstraints that are violated, or on2. variables that are wrongly instantiated.These two me
hanisms 
an formally be des
ribed asfollows: f1(s) = mXi=1 wi � �(s; 
i); (1)where �(s; 
i) = � 1 if s violates 
i0 otherwiserespe
tively f2(s) = nXi=1 wi � �(s; Ci); (2)where�(s; Ci) = � 1 if s violates at least one 
 2 Ci0 otherwiseObviously, for the above fun
tions f1; f2 and for ea
hs 2 S we have that �(s) = true if and only if fi(s) = 0with i 2 f1; 2g.The 
orresponding adaption s
hemes, that is, weightupdate me
hanisms, are as follows:wi  wi + �(X�; 
i) for i 2 f1; : : : ;mg (SAW
on)



respe
tivelywi  wi + �(X�; Ci) for i 2 f1; : : : ; ng (SAWvar)with X� denoting a variable in the best individual inthe population found so far.4.2 REFINING FUNCTIONSIn [12℄ and [13℄, Gottlieb and Voss have shown that re-�ning fun
tions improve the performan
e of SAW for3-SAT problems. Here we investigate if using thesere�ning fun
tions also improves performan
e on ran-domly generated binary CSPs. Extending the SAWEA with a re�ning fun
tion means to add a term��r(X) to the �tness fun
tions leading to the followingde�nitions:f3(s) = mXi=1 wi � �(s; 
i) + � � r(X) (3)respe
tivelyf4(s) = nXi=1 wi � �(s; Ci) + � � r(X) (4)Adding � � r(X) to the �tness fun
tion makes it pos-sible to di�erentiate between individuals having thesame basi
 �tness value. Note that the re�ning fun
-tion values are limited to the range [0; 1). By using are�ning fa
tor �, the in
uen
e of the re�ning fun
tionon the �tness fun
tion 
an be tuned. The original def-inition of the re�ning fun
tion used in [13℄ is adaptedto CSPs as follows:r(X) = 12  1 + Pnj=1K(Xj) � vj1 +Pnj=1 jvj j !withK(Xj) = � 1 ifXj is not 
ausing a violation inX��1 otherwisewhere weight vj belongs to variable Xj . Note thatr(X) always adds a term 
on
erning the wrongly in-stantiated variables and we get two separate sets ofweights. In 
ase of f1 (f3) we get weights wi withi 2 f1; : : : ;mg for the 
onstraints and weights vj withj 2 f1; : : : ; ng for the variables. In 
ase of f2 (f4)both sets of weights wi with i 2 f1; : : : ; ng and vjwith j 2 f1; : : : ; ng 
on
ern the variables.In both 
ases the update rule SAW
on, respe
tivelySAWvar 
an be used for the w's and we introdu
e anew rule for the v's. The values for the v's are alsoinitiated with 1 and updated simultaneously with thew's.

Following [13℄ we, in fa
t, introdu
e two di�erent up-date rules for the weights in the re�nement fun
tion.The rule AW1 is a problem-independent version whi
hre
e
ts a moderate adjustment of the weights towardsthe 
omplement of the 
urrent best individual X�,vj  vj �K(x�j ) for j 2 f1; : : : ; ng (AW1)The rule AW2 is a problem-dependent version thatuses CSP spe
i�
 knowledge in Cl:vj  vj � nXl=1K(x�l )j Cl(x�l )j j 2 f1; : : : ; ng (AW2)AW2 takes into a

ount that it is ne
essary to 
hangea variable that has an unsatis�ed 
onstraint that bindsit in order to improve the 
urrent solution and hen
eguides the EA towards solutions satisfying yet unsat-is�ed 
onstraints. We denote the SAW algorithm thatuses f3 with update rule AW1 as SAW
on;ref;AW1and if it uses f4 with update rule AW1 we useSAWvar;ref;AW1. We repla
e AW1 subs
ript withAW2 if the SAW algorithm uses the AW2 update rule.4.3 DECAYIn [11℄, Frank showed that WGSAT, a lo
al sear
halgorithm using 
lause weights, is sus
eptible to largeabsolute weights and 
onvergen
e of relative weights.To over
ome this problem he suggested a de
ay fa
tor.A de
ay fa
tor yields a 
han
e to redu
e high absoluteweights, whi
h allows a 
orre
tion of inappropriatelyadapted weights. Given the de
ay fa
tor � 2 [0; 1℄, we
onsider the de
ayed adaption s
hemes:wi �wi + �(X�; 
i) (SAWvar;d)wi �wi + �(X�; Ci) (SAW
on;d)vj  �vj �K(x�j ) (AW1d)vj  �vj �Pnl=1K(x�l )j Cl(x�l )j (AW2d)As already observed for WGSAT in [11℄ and for SAWin [13℄, for 3-SAT, the good �-values are very 
lose to 1.The same behavior for large de
ay rates o

urred us-ing the SAW me
hanisms for CSPs as it did for 3-SAT.If the de
ay rate was too large (� too small, approxi-mately � � 0:9), it destroyed mu
h of the informationlearned during the sear
h pro
ess.5 EXPERIMENTAL RESULTSWe used a steady-state evolutionary algorithm withorder-based representation that proved to be the bestoption in [10℄. Here an individual is a permutation of



the variables and a de
oder is used to assign domainvalues to ea
h variable in the order they appear ina given permutation. The de
oder sequentially takesvariables from the permutation and tries to instanti-ate it with values that do not violate any 
onstraintsthat bind already instantiated variables. If the de
oderdoes not �nd su
h a value, the variable is left unin-stantiated. (Te
hni
ally, it is instantiated to a spe
ialvalue indi
ating a 
on
i
t.) Earlier work has shownthat small populations produ
e the best performan
eand that for CSPs a population size of just 1 is optimal.Therefore, we use a (1 + 1) style EA and no 
rossoveroperation is needed. The mutation operator is a simpleswap operator, whi
h randomly 
hooses one variablein the given permutation and swaps it with anotherrandomly 
hosen variable. The initial population isgenerated randomly and the weights are adapted ea
htime 250 evaluations have been done. (Preliminary ex-periments with di�erent adaption periods showed lit-tle di�eren
es in performan
e; 250 gave just slightlybetter results than other values.) After a maximumof 100,000 evaluations, the runs were terminated. Asmentioned in se
tion 3, we used a set of 10 di�erentprobabilities for the Model E CSP generator. Withea
h of these probabilities we generated 25 instan
esand performed 10 runs over ea
h instan
e, resulting in250 runs for every p value for ea
h algorithm variant.We used two measures of 
omparison for the algo-rithms; �rst Su

ess Rate (SR), whi
h denotes theper
entage of the runs that were 
ompleted with a so-lution3; se
ond, Average number of Evaluations to aSolution (AES). Note that the last measure is only de-�ned when a solution was found and that, although itseems a `fair' measure, it 
ould be misleading as someEAs use `hidden labor' whi
h 
ould be invisible to themeasure. An example of hidden labor 
ould be someof the work done in (AW2), where problem-spe
i�
knowledge was used in the �tness fun
tion.We experimented with SAW algorithms using the dif-ferent �tness fun
tions (f1; f2; f3; f4), using the twore�ning fun
tions (AW1 and AW2) for �tness fun
-tions f3 and f4 and using the de
ay me
hanisms.The results are depi
ted in �gure 1, the 
orrespondingnumeri
al �gures are given in table 1. These out
omesshow that there is little di�eren
e between the SAWalgorithms that 
onsider either 
onstraints or variables(�tness fun
tions f1 or f2). It might be observed thatSAWvar has a small advantage in Average Evaluationsto Solution (AES) but when 
omparing Su

ess Rate(SR), the di�eren
es are small. In instan
es with prob-3We use the de
imal notation of a per
entage: 10% =0:10

SAW
onSAWvar Probability
SR

0.380.360.340.320.30.280.260.240.220.2
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SAW
onSAWvar
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AES

0.380.360.340.320.30.280.260.240.220.2

300002500020000150001000050000Figure 1: SR and AES graphs for SAWvar and SAW
onability 0:34 and 0:38 SAWvar has a better SR, whilein instan
es with probability 0:36 SAW
on solved moreinstan
es. Other instan
es were solved by both algo-rithms equally well (SR) and until p = 0:24 the speed�gures (AES) are also the same. The standard devi-ations of the averages for AES (not presented here)were also so 
lose that no further distin
tion 
ould bemade.The little di�eren
e between trying to solve CSPs witheither penalizing variables or 
onstraints is somewhatsurprising if we 
onsider that there are mu
h more
onstraints than variables. This implies that SAW
onworking with the �tness fun
tion f1 has more infor-mation, but apparently f2 is already \strong" enough.SAWvar SAW
onSR AES SR AES0.20 1 9.936 1 9.9360.22 1 17.304 1 17.3040.24 1 45.632 1 45.6320.26 1 104.448 1 106.3360.28 1 258.28 1 311.0680.30 1 870.556 1 1023.660.32 1 2984.63 1 3322.180.34 0.816 13962.6 0.808 15212.30.36 0.396 21683.3 0.424 22480.30.38 0.124 18968.3 0.108 12332.2Table 1: Numeri
al results for SAWvar and SAW
onThe results of the experiments with the ex-tended SAW me
hanism are given in table 2 forSAWvar;ref;AW1 and SAW
on;ref;AW1 and in table 3for SAWvar;ref;AW2 and SAW
on;ref;AW2. The �guresshow that the addition of the re�ning fun
tion AW1produ
ed no improvement at all. Experiments werealso performed with varying re�nement fa
tors, evenup to values where the performan
e of the algorithms



began to deteriorate. Di�eren
es between the re�ningfun
tions (AW1 and AW2) are also small, whi
h in-di
ates that adding extra domain information, in theform of Cl, also did not improve sear
h performan
e.This is also surprising be
ause one would expe
t to in-
rease sear
h speed when in
orporating extra domainknowledge. This might 
ome at the 
ost of premature
onvergen
e be
ause of sear
hing too greedilySAWvar;ref;AW1 SAW
on;ref;AW1SR AES SR AES0.20 1 9.936 1 9.9360.22 1 17.304 1 17.3040.24 1 45.632 1 45.6320.26 1 104.448 1 106.3360.28 1 258.28 1 311.0680.30 1 870.556 1 1023.660.32 1 2984.63 1 3322.180.34 0.816 13962.6 0.808 15212.30.36 0.396 21683.3 0.424 22480.30.38 0.124 18968.3 0.108 12332.3Table 2: Results for SAWvar;ref;AW1 andSAW
on;ref;AW1SAWvar;ref;AW2 SAW
on;ref;AW2SR AES SR AES0.20 1 9.936 1 9.9360.22 1 17.304 1 17.3040.24 1 45.632 1 45.6320.26 1 104.448 1 104.5240.28 1 258.28 1 252.9960.30 1 870.556 1 1048.480.32 0.996 2984.63 1 3430.640.34 0.816 13962.6 0.840 16487.50.36 0.396 21683.3 0.368 20957.40.38 0.124 18968.3 0.116 23669.4Table 3: Results for SAWvar;ref;AW2 andSAW
on;ref;AW2When interpreting these results, re
all that the re�n-ing fun
tion was designed to distinguish between indi-viduals having the same basi
 �tness value. The la
kof improvement when using re�ning fun
tions seems toimply that in 
ase of binary CSPs, the basi
 fun
tionsf1 and f2 
ontain suÆ
ient information to guide thesear
h su

essfully.Experiments using de
ay fa
tor for solving SAT prob-lems showed that values around � = 1 work best, 
f.

[11, 13℄. Our studies with random binary CSPs alsoindi
ated the same. However, we also found that ap-plying de
ay to the SAW te
hnique did not 
hange al-gorithm performan
e signi�
antly when � values weretaken from the set f0:95; 0:96; 0:97; 0:98; 0:99; 1:00g.Note that � = 1:00 amounts to no de
ay. Thereforethis observation implies that algorithm variants with-out de
ay and with de
ay using a good � value are notperforming di�erently.Figure 2 gives an illustration by showing typi
al runsusing di�erent de
ay fa
tors. These runs were per-formed on instan
es generated with probability 0:32.Note that the �gure only presents the sear
h speedresults (AES). The su

ess rates are not given be-
ause all algorithms solved all instan
es, ex
ept forSAWvar;ref;AW1;d with de
ay fa
tor 0:98 whi
h solved096% of the instan
es (a SR of = 0:96). The 
urves in-di
ate a di�eren
e between SAWvar;ref and the otheralgorithms. Namely, SAWvar;ref using either AW1 orAW2 seems to improve when swit
hing o� de
ay, i.e.for � = 1:0. For all other algorithms a de
ay fa
torhas no signi�
ant in
uen
e on the sear
h speed. Re
allthat the de
ay of weights in the SAW �tness fun
tionwas added to a
tively suppress the growth of weightvalues. These results indi
ate that su
h a growth {identi�ed as dangerous in related �elds, 
f. [11, 13℄,{ either does not o

ur or is not harmful in 
ase ofrandom binary CSPs.
SAW
on;ref;AW2;dSAWvar;ref;AW2;dSAW
on;ref;AW1;dSAWvar;ref;AW1;dSAW
on;dSAWvar;d

De
ay Fa
tor
AES

10.990.980.970.960.95

24002200200018001600140012001000800600Figure 2: graphs of SAWvar;d and SAW
on;d with dif-ferent de
ay fa
tors. p = 0:32, � = 250, re�nement-fa
tor � = 406 CONCLUSIONSThe resear
h presented in this paper had a twofoldobje
tive: presenting and illustrating a re
ently pro-posed problem instan
e generator for binary CSPs and
omparing a number of variants and extensions of theSAW te
hnique. In parti
ular, we used a CSP gener-ator based on the so-
alled model E in [1℄. We foundthat the phase transition e�e
ts were 
learly observ-



able and by the use of one single hardness parameterthe results were easier to present { and to interpret {than in 
ase of the formerly used two-parameter-basedgenerators [3, 4, 5, 10℄. The new generator deserves are
ommendation for further experimental resear
h.As for the algorithm variants, we experimented withthe unextended version of the SAW te
hnique withtwo penalty systems: one 
al
ulated over the variablesand one 
al
ulated over the 
onstraints. They turnedout to yield very similar performan
e, whi
h is sur-prising. The 
onstraint based �tness fun
tion, afterall, is based on more information as there are usuallymore 
onstraints than variables and one would expe
tto improve a sear
h algorithm when using more infor-mation.Inspired by related work on satis�ability problems wehave also experimented with two extensions of SAW-ing. In parti
ular, we tried re�ning fun
tions and ade
ay me
hanism. A re�ning fun
tion � � r(X) addedto the �tness fun
tion makes it possible to di�erenti-ate between individuals having the same basi
 �tnessvalue. We found that the appli
ation of re�ning fun
-tions did not improve performan
e and that varyingthe re�ning fa
tor � did not have any in
uen
e onperforman
e. These results seem to imply that in 
aseof binary CSPs the basi
 fun
tions f1 and f2 
ontainsuÆ
ient information to guide the sear
h su

essfully.The addition of the de
ay fa
tor did not improve theperforman
e in general either, neither for the origi-nal SAW te
hniques, nor for the SAW te
hnique witha re�ning fun
tion. In fa
t it had a negative e�e
ton SAWvar;ref . This might be the 
onsequen
e ofthe relatively small problem size, where the a

umu-lation of large relative weights stays within limits andthus does not need a 
ounterfor
e. This �nding pointsto the same dire
tion as our 
on
lusion about re�ne-ment fun
tions: the basi
 SAW me
hanism is powerfulenough to solve random binary CSPs.All in all, the 
omparison of the algorithm variantsshows a surprising, but pleasant pi
ture: The simplestsetup (SAW with variable related penalties, no exten-sions) is as good or better than any of the more sophis-ti
ated variants. Although 
urrent and future resear
hwill undoubtfully re�ne this pi
ture, for the time beingthis is good news for algorithm designers.Further resear
h is 
arried out with new types of re�n-ing fun
tions, problems with varying sizes (s
ale-up),and larger population sizes.
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