
An Experimental Comparison of ThreeDi�erent Heuristic GAs for SolvingConstraint Satisfaction ProblemsB.G.W. CraenenNovember 2, 1999



AbstractIn this thesis three di�erent techniques for solving Constraint Satisfaction Prob-lems (CSPs) with Genetic Algorithms (GAs) are compared on a set of benchmarkproblems consisting of randomly generated binary constraint satisfaction prob-lems. The techniques that are investigated exploit heuristic information on theconstraint network to help traditional GAs solve CSPs. Implemented are threedi�erent GAs using these techniques: ESP-GA, which uses a constraint process-ing phase and a probabilistic repair rule by E. Marchiori; H-GA, using heuristicgenetic operators by Eiben et al.; and Arc-GA, which uses two new geneticoperators by M. C. Ri� Rojas and a new �tness function that are guided byinformation from the constraint network. Three di�erent versions of H-GA wereevaluated. These three GAs are tested on benchmark problems obtained by arandom generator of binary CSP instances, which generates constraints whosedensity and tightness can be speci�ed by the user. This allows one to studythe performance of these algorithms on di�erent kinds of CSPs. Although theresults of the di�erent GAs lie close together, they show that two versions of H-GAperform slightly better than the third version of H-GA and ESP-GA with Arc-GAperforming the least when comparing success rates. This seems to support thenotion that GAs using strong heuristics are prone to premature convergence whileGAs with more general heuristics are still able to escape local optima. Finally,some options for future study are explored.



Contents1 Introduction 32 Constraint satisfaction problems and GAs 42.1 Constraint satisfaction problems . . . . . . . . . . . . . . . . . . 42.2 The random CSP instance generator . . . . . . . . . . . . . . . . 72.3 Constraint Satisfaction Problems and Genetic Algorithms . . . . 83 Solving CSPs with ESP-GAs 83.1 Constraint processing . . . . . . . . . . . . . . . . . . . . . . . . 103.2 Dependency propagation . . . . . . . . . . . . . . . . . . . . . . . 123.2.1 Selecting the variable . . . . . . . . . . . . . . . . . . . . 123.2.2 Selecting the value . . . . . . . . . . . . . . . . . . . . . . 123.2.3 Constraint order . . . . . . . . . . . . . . . . . . . . . . . 133.3 Other considerations . . . . . . . . . . . . . . . . . . . . . . . . . 134 Solving CSPs with H-GAs 154.1 Asexual heuristic operator . . . . . . . . . . . . . . . . . . . . . . 154.1.1 Selecting the variable . . . . . . . . . . . . . . . . . . . . 164.1.2 Selecting the value . . . . . . . . . . . . . . . . . . . . . . 164.1.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . 174.2 Multi-parent heuristic operator . . . . . . . . . . . . . . . . . . . 184.3 Other considerations . . . . . . . . . . . . . . . . . . . . . . . . . 195 Solving CSPs with Arc-GAs 205.1 The Arc-�tness function . . . . . . . . . . . . . . . . . . . . . . . 235.2 Arc-mutation and Arc-crossover . . . . . . . . . . . . . . . . . . . 245.3 Other considerations . . . . . . . . . . . . . . . . . . . . . . . . . 276 Software description and experimental setup 276.1 Software description and experimental setup ESP-GA . . . . . . . 286.2 Software description and experimental setup H-GA . . . . . . . . 286.3 Software description and experimental setup Arc-GA . . . . . . . 297 Results 298 Comparison 318.1 About ESP-GA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328.2 About the three versions of H-GA . . . . . . . . . . . . . . . . . . 338.3 About Arc-GA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 Conclusion 3410 Future Study 35A Sample output of the random CSP instance generator 381



B Graphical representation of the result table, SR and AES 39C Graphical representation of landscapes of solvability of all threemethods, SR and AES 44List of Tables1 Table of CSP - GA synonyms . . . . . . . . . . . . . . . . . . . . . 82 Short overview of the experimental setup of the basic-GA . . . . . 283 Short overview of the experimental setup of ESP-GA . . . . . . . . 284 Short overview of the experimental setup of the three versions ofH-GA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 Short overview of the experimental setup of Arc-GA . . . . . . . . 306 Success rates and the corresponding average number of evalua-tions to solution (within parenthesis) for ESP-GA, Arc-GA and thethree versions of H-GA . . . . . . . . . . . . . . . . . . . . . . . . 31List of Figures1 Explanatory picture of the error evaluation set of variables. . . . 212 Explanatory picture of the set of crossover instantiated constraints 223 Explanatory picture of the set of mutation instantiated constraints 234 SR-Graph of all three methods with density 0.1 . . . . . . . . . . 395 AES-Graph of all three methods with density 0.1 . . . . . . . . . 396 SR-Graph of all three methods with density 0.3 . . . . . . . . . . 407 AES-Graph of all three methods with density 0.3 . . . . . . . . . 408 SR-Graph of all three methods with density 0.5 . . . . . . . . . . 419 AES-Graph of all three methods with density 0.5 . . . . . . . . . 4110 SR-Graph of all three methods with density 0.7 . . . . . . . . . . 4211 AES-Graph of all three methods with density 0.7 . . . . . . . . . 4212 SR-Graph of all three methods with density 0.9 . . . . . . . . . . 4313 AES-Graph of all three methods with density 0.9 . . . . . . . . . 4314 SR-Graph of landscape of solvability of ESP-GA . . . . . . . . . . 4415 AES-Graph of landscape of solvability of ESP-GA . . . . . . . . . 4416 SR-Graph of landscape of solvability of H-GA.1 . . . . . . . . . . 4517 AES-graph of landscape of solvability of H-GA.1 . . . . . . . . . . 4518 SR-Graph of landscape of solvability of H-GA.2 . . . . . . . . . . 4619 AES-Graph of landscape of solvability of H-GA.2 . . . . . . . . . 4620 SR-Graph of landscape of solvability of H-GA.3 . . . . . . . . . . 4721 AES-Graph of landscape of solvability of H-GA.3 . . . . . . . . . 4722 SR-Graph of landscape of solvability of Arc-GA . . . . . . . . . . 4823 AES-Graph of landscape of solvability of Arc-GA . . . . . . . . . 48
2



1 IntroductionConstraint satisfaction has become a research topic common to many di�erentresearch communities (cf. e.g. [3, 16, 19, 34]), due to its practical relevance inmany application areas like operations research, hardware design and arti�cialintelligence. In particular, in the last couple of years, various techniques basedon genetic algorithms have been developed for the solution of CSPs [4, 7, 11,23, 26, 27]. Moreover, search heuristics and constraint propagation techniquesdeveloped in previous works on constraint processing (cf., [34, 35]) have beenincorporated into genetic operators [8, 26, 29]. Due to its stochastic nature, aGA does not provide a complete tool for solving CSPs, and in general is not usedfor detecting whether a CSP is unsatis�able. A notable exception is a recentproposal [1] that has introduced a hybrid algorithm that combines conceptsfrom genetic algorithms and hill climbing, and that incorporates arc revision inorder to decide when to stop (with failure) in case the CSP is unsatis�able.Usually GAs are considered to be ill-suited for solving CSPs. This is becausethe traditional search operators (mutation and recombination) are considered tobe `blind' to the constraints of the problem. As the traditional search operatorsdo not take into account the variable interdependencies that are inherent inCSPs, applying them to an individual can result in the violation of a constraintwhere this was not the case before the application. Another reason why GAs areconsidered to be ill-suited to solving CSPs is the absence of an objective functionin a CSP| there is only a set of constraints to be satis�ed | while traditionallyan GA is used to optimize. Despite such general arguments, in recent years, therehave been reports on quite a few GAs for solving CSPs that have a satisfactoryperformance.Roughly speaking, these GAs can be divided into two categories: those usinga �tness or penalty function that is adapted during the search [1, 4, 5, 10, 12, 13,14, 27, 28], and those based on exploiting heuristic information on the constraintnetwork [7, 8, 9, 20, 31, 32]. In this thesis three methods are investigatedfrom the second category: the process and repair method by E. Marchiori [20],the method using heuristic genetic operators by Eiben et al. [7], and the GAusing genetic operators and a �tness function that are guided by the constraintnetwork by M. C. Ri� Rojas [31, 32]. Three speci�c GAs are implemented basedon these corresponding methods, called ESP-GA, H-GA, and Arc-GA respectively,in this thesis. All three implementations were compared on a test suite consistingof randomly generated binary CSPs with �nite domains.Although the three algorithms I used were �rmly based on the original algo-rithms, some adaptation were necessary. First, I had to translate the methodsthat were set out in the original articles into algorithms that worked well withinthe library I used. Secondly, some alterations were necessary to perform a com-parative analysis, making the algorithms work together with the CSP instancegenerator is one of them. Finally I have made some design choices regardingthe heuristics that the algorithms had to use. I have used relatively the sameheuristics where this was possible, again, this was done to perform a fair com-parative analysis between the di�erent GAs. Furthermore, I have tried to put3



together a framework of terms and de�nitions early in the thesis, to bridge thepossible gap in terminology that can occur when two di�erent �elds of studyare discussed which both have similar terms for di�erent concepts.In order to study the relative performance of these algorithms I use a setof benchmark problems consisting of randomly generated problem instances,where the hardness of the problem instances is in
uenced by two parameters:constraint tightness and constraint density. Detailed feedback on GA behavior isgained by running experiments on 25 di�erent combinations of these parameters.While considering 10 runs on 250 problem instances, I can summarize that GAsthat use general heuristics had the best success rate of all three GAs. The �rsttwo versions of H-GA fall in this category. GAs with strong heuristics, like Arc-GA,seem less able to escape local optima and have a success rate that is lower thanthe other GAs. ESP-GA, using a dependency propagation or repair rule, has aperformance in between these two GAs.The thesis is organized as follows: the next section describes the notion ofconstrained problems and introduces some standard de�nitions. It also dealswith the random CSP instance generator that I use in my experiments and theoutput it produces. After that, some general notions about solving CSPs withGAs are mentioned. In section 3 the adaptation of the method by E. Marchiorito the random CSP instance generator and its output is explained. In section 4the same is done with the method of Eiben et al. as is with the GA fromM. C. Ri� Rojas in section 5. In section 6 the exact software description andexperimental setup of all three methods is given. The next section (section 7),gives the results of the experiments while in section 8 these results are compared.After that, in section 9, my conclusions are drawn, and �nally, in section 10, Idiscuss some possibilities for future study.2 Constraint satisfaction problems and GAs2.1 Constraint satisfaction problemsConstrained problems can be roughly divided into two categories: constrainedoptimization problems and constraint satisfaction problems [11].A constrained optimization problem (COP) is a triple hS; f; �i, where S is afree search space (i.e. S = D1 � : : :�Dn is a Cartesian product of sets), f is a(real valued) objective function on S and � is a formula (Boolean function on S).A solution of a constrained optimization problem is an s 2 S with �(s) = trueand an optimal f -value.A constraint satisfaction problem (CSP) is a pair hS; �i, where S is a freesearch space and � is a formula (Boolean function on S). A solution of aconstraint satisfaction problem is an s 2 S with �(s) = true.Usually a CSP is stated as a problem of �nding a set of values p1; : : : ; pn ofvariables v1; : : : ; vn within the �nite domains D1; : : : ; Dn such that constraintsc1; : : : ; ck hold. I use pi to indicate the values, vi for variables, Di for thedomains over these variables, n for the total number of variables and k for the4



total number of constraints. The formula � is then the conjunction of the givenconstraints.One may be interested in one, some or all solutions, or only in the existenceof a solution. In this thesis I restrict the discussion to �nding one solution. Withthis terminology, solving a CSP means �nding one feasible element of the searchspace while solving a COP means �nding a feasible and optimal element. SolvingCOPs by GAs is extensively treated in [21, 22] and [25], the present investigationconcerns solving CSPs by GAs.In this thesis binary constraint satisfaction problems over �nite domains areconsidered, this means that constraints act between pairs of variables. This isnot restrictive however since any CSP can be reduced to a binary CSP by using asuitable transformation which involves the de�nition of more complex domains(cf. [34]).Because we look at binary constraint satisfaction problems a constraint canbe written like: c : Di �Dj ! f0; 1gI adopt here the convention that c(pi; pj) = 1 if c(pi; pj) is false, that is if thevalue pair hpi; pji violates c. Without lose of generality one can assume thatfor each constraint (i < j) holds1. Sometimes it is useful to indicate the usedconstraint by its (two) variables, in that case I use the notation ci;j .A constraint c : Di�Dj ! f0; 1g is relevant to variables vi and vj and is notrelevant to other variables. The cardinality with respect to a CSP of a variableis the number of constraints relevant to that variable. Satis�ed cardinality isthe number of satis�ed constraints relevant to the variable while when calculat-ing the unsatis�ed cardinality , only the unsatis�ed constraints relevant to thevariable are counted.In order to extract information about the constraints of the CSP and therelation they have to each other, I use a constraint matrix . A constraint matrixbelonging to a CSP is a R = k � n matrix whose (i; j)-th element is 1 when vjis relevant for ci2:Ri;j = � 1 if variable vj is relevant for ci0 otherwiseIt is convenient to distinguish two classes of (binary) constraints, calledfunctional and relational. Functional constraints are such that for every pair ofsolutions hp1; p2i and hp01; p02i, if p1 = p01 then p2 = p02. A constraint that is notfunctional is called a relational constraint.A con
ict belonging to constraint c is a value pair hpi; pji 2 Di�Dj (i < j)such that c(pi; pj) = 1, that is, a con
ict is a value pair that violates a constraint.1If this was not the case, one can `merge' constraint c : Di�Dj ! f0; 1g and d : Dj�Di !f0; 1g into one constraint e : Di �Dj ! f0; 1g in such a way that e(pi; pj) = 1, c(pi; pj) =1 or d(pj ; pi) = 1.2Because in this thesis I talk about binary CSPs, of the entries bearing on a constraint, onlytwo are non-zero as there are only two relevant variables to every constraint.5



The set of con
icts belonging to constraint c : Di � Dj ! f0; 1g can thenbe de�ned as: fhpi; pji 2 Di �Dj jc(pi; pj) = 1gA con
ict matrix belonging to constraint c : Di�Dj ! f0; 1g is a jDij�jDj jmatrix whose (i; j)-th element is 0 i� c(pi; pj) = 0 and 1 i� c(pi; pj) = 1:Ci;j = � 1 i� c(pi; pj) = 10 i� c(pi; pj) = 0An arc is a pair of variables belonging to a constraint c : Di �Dj ! f0; 1g:hvi; vji with (i < j)Because an arc speci�es only part of a constraint, arc-relevance and arc-cardinality can be de�ned in a similar way as was earlier done with variable-relevance and variable-cardinality3.The constraint network can be de�ned as an undirected graph G = (N;E)where N is the set of variables and E is the set of arcs that connect thesevariables.It is also useful to de�ne instantiations. A complete instantiation is a map-ping (v1; : : : ; vn) ! D1 � : : : �Dn. A partial instantiation is a mapping fromsome of the variables such that it assigns to each of the mapped variables avalue from its domain. A violator instantiation is an instantiation (partial orcomplete) with the additional requirement that the instantiation violates atleast one constraint, in other words, its values contain a con
ict with one of theconstraints.A class of random binary CSPs can be speci�ed by four parameters hn;m; d; ti,where n is the number of variables, m is the uniform domain size (i.e. jDij =m for i = 1; : : : ; n), d is the probability that a constraint exists between twovariables (constraint density) and t is the probability of a con
ict between twovalues along a given constraint (constraint tightness).CSPs exhibit a phase transition when one of these parameters is varied. Atthe phase transition, problems change from being relatively easy to solve (i.e.almost all problems have many solutions) to being very easy to prove unsolvable(i.e. almost all problems have no solutions). The term mushy region is used toindicate that region, where the probability that a problem is solvable, changesfrom almost one to almost zero. Within this mushy region, problems are ingeneral di�cult to solve or to prove unsolvable. An important issue in thestudy of binary CSPs is to identify those problem instances which are very hardto solve [2]. Recent theoretical investigations ([33, 37]) allow one to predictwhere the hardest problem instances should occur. Williams and Hogg in [37]develop a theory that predicts that the phase transition occurs when per variable3Because an arc only speci�es the pair of variables to a constraint, and it does not specifywhich pair of variables is in con
ict or not, one cannot determine if an arc, as such, is satis�edor not. Therefore, one cannot determine the satis�ed or unsatis�ed cardinality of an arcwhereas that was possible with constraints. 6



there are a critical number of nogoods (i.e., of con
icts between that variableand all others)4. Smith in [33] conjectures that the phase transition occurs whenproblems have, on average, just one solution.An experimental investigation with a complete algorithm (i.e., an algorithmthat �nds a solution or detects unsatis�ability) based on forward checking andon con
ict-directed backjumping, is given by Prosser in [30], which providesempirical support to the theoretical prediction given in [33, 37] for higher den-sity/tightness of the constraint networks.2.2 The random CSP instance generatorTo generate a test suite, a CSP instance generator was used, which was devel-oped by J.I. van Hemert, loosely based on the instance generator of G. Dozier[1]. Given hn;m; d; ti the instance generator �rst calculates the number of con-straints that will be produced using the following equation:Number of constraints = n(n� 1)2 � dIt then starts producing constraints by randomly choosing two variables andde�ning a constraint between them. When a constraint is de�ned betweenvariable vi and vj , a con
ict matrix of con
icting values is generated. Thenumber of con
icts in this table is determined in advance by this equation:Number of con
icts = m2 � tTo produce a con
ict, two values are chosen randomly, one for the �rst and onefor the second variable. When no con
ict is present between the two values forthe variables, a con
ict is produced.The random CSP instance generator produces output in the following form:The �rst two lines of the output indicate the number of variables (n) and thedomain size of each variable (m). In this thesis all domains have an equal size,so in the input used in this thesis these values are the same. After a blank line,a column of zeros and ones represents the con
ict matrices between the valuepairs of the variables of the CSP.Suppose there are n di�erent variables, all having a domain size of m, the�rst table of m �m entries de�nes the con
icts of the �rst variable (v1) withthe second variable (v2). The next m �m table de�nes the con
icts betweenvariables (v1) and (v3) etc. until all constraints that are relevant to the �rstvariable have been de�ned by their con
ict matrix. After this, the constraints ofthe second variable (v2) with the third variable (v3) are de�ned until �nally allconstraints between all variables have been set. If there's no constraint betweentwo variables, the array contains only zeros.In appendix A a sample output of the CSP instance generator is given. Allremarks not in `type style' are edited in later to give better understanding of thecontents of the output. Some tables of this output will be used as an ongoing4The expected number of nogoods per variable is dtm2(n� 1).7



example throughout this thesis. The sample de�nes a �ve variable CSP withan equal domain size of �ve and a constraint density of 0.5 and a constrainttightness of 0.5.2.3 Constraint Satisfaction Problems and Genetic Algo-rithmsIn this thesis I will | and have already | use many terms that originatefrom CSP-terminology. In table 1, I have put together, mostly for clarity, thesynonyms for these terms for readers who are more familiar with the classicGA-terminology. I use the CSP-terminology mostly because I feel that it suitesbest the combined �elds of GAs and CSPs.Constraint Solving Problems Evolutionary AlgorithmsComplete Instantiation Chromosome,IndividualVariable GeneValue AlleleTable 1: Table of CSP - GA synonymsThere are several ways to handle constraints in an GA. At a high conceptuallevel two cases can be distinguished, depending on whether the constraints arehandled: indirectly or directly [11]. Indirect constraint handling means that theproblem of satisfying constraints is circumvented by incorporating them in the�tness function f such that the optimality of f implies that the constraints aresatis�ed. Then the optimization power of the GA can be used to �nd a solution.By direct constraint handling I mean that the constraints are left as they areand `something' is done in the GA to enforce them. Some commonly used optionsare repair mechanisms, decoding algorithms and using special reproduction op-erators [11, 24].In this thesis I pay attention to GAs that use direct handling to �nd a solu-tion to CSPs. ESP-GAs use direct handling because they repair the individuals.Repairing the individuals is done based on the propagation of the dependenciesof the variables of the CSP. To make this possible, some precalculation of theCSP is necessary. H-GAs use new crossover or mutation methods that incorporateheuristics to �nd better individuals while Arc-GAs use next to new reproductionoperators also a new �tness evaluation system, which all base their choices on asearch of the constraint network. All three methods use direct handling of theconstraints as a way to generate solutions to the CSP.3 Solving CSPs with ESP-GAsIn [20], E. Marchiori suggests a new approach to solving CSPs by GAs. Theapproach consists of two main phases in the design of the GA. In the �rst phase8



the constraints of the CSP are rewritten and in the second phase the CSP issolved by a GA with an embedded repair rule. In her article she names themethod ESP-GA after: Elimination, Splitting and Propagation. The methodhas been tested on the �ve-houses puzzle and the n-queens problem were it hadsatisfactory performance, even when not all steps of the method were used.The idea is based on the `glass-box' approach [36] because it adjusts theCSP in such a way that there is only one single (type of) primitive constraint.By decomposing more complex constraints into primitive ones, the resultingconstraints have the same granularity and therefore the same intrinsic di�culty.This rewriting of constraints is done in two steps and is called constraintprocessing. Because after the constraints are rewritten, all constraints have anequal form, a single repair rule can be used in the GA to enforce dependencypropagation. Because all constraints share a single repair rule, repairing anindividual can be performed locally by applying the repair rule to every violatingconstraint.As said earlier, the method proposed by E. Marchiori consists of two phases:The �rst phase, called constraint processing, rewrites the original CSP in twosteps: First, called the elimination step, functional constraints are eliminatedin order to reduce the number of variables in the problem. This is done analo-gously to the operation used, e.g., in GENOCOP [23]. In the second step, called thesplitting step, the resulting constraints are decomposed into a set of constraintsin canonical form, a composition of primitive constraints. The constraints pro-posed are of the form5: � � vi � � � vj 6= 
Because some of the variables are discarded during the elimination of functionalconstraints, these have to be recovered when the GA yields a solution. In thisway a solution of the original CSP can be calculated.In the second phase, called dependency propagation, the adjusted CSP issolved using a GA that incorporates a form of probabilistic repair rule. It dealswith violations of primitive constraints.6 The repair rule proposed is of theform: if � � pi � � � pj = 
 then modify pi or pjSummarizing, the following scheme of the algorithm can be obtained:1. rewriting the CSP using constraint processing:(a) elimination step: eliminate functional constraints(b) splitting step: decompose the remaining constraints into constraintsin one single canonical form2. Solving the CSP using a GA with dependency propagation in the form of arepair rule5other constraint forms are also possible6because all constraints of the CSP, after constraint processing, are of the same canonicalform, only one single repair-rule is needed 9



3.1 Constraint processingThe implementation of constraint processing is done by converting the con
icttables that were produced by the CSP instance generator into constraints in theform that was proposed by E. Marchiori:� � vi � � � vj 6= 
Converting the con
ict tables into this type of constraint can be done by mul-tiplying the value of the �rst variable (vi) with the domain size of the secondvariable and then subtract the value of the second variable:
 = jDj j � vi � vjThis simply means that the 
-value of the proposed constraint is calculated bytaking � = Dj and � = 1. To check violation of a constraint of this form oneenters the values for the speci�c variables. If the result is the calculated 
-value,the constraint is violated. A small example: suppose two variables v2 and v3with a uniform domain size of �ve and with the following con
ict matrix:v3v2 0BBBB@ 1 0 1 0 10 1 0 0 10 1 1 0 01 0 0 0 00 0 1 1 0 1CCCCAThe array can be recalculated in the explained way into the following table of
-values: v3v2 0BBBB@ 4 3 2 1 09 8 7 6 514 13 12 11 1019 18 17 16 1524 23 22 21 20 1CCCCABecause I am only interested in the con
icts, only the 
-values which had acon
ict (the non-zero entries in the con
ict matrix) have to be stored. Whenreplacing the non-con
ict entries of the earlier table with `�'-labels, the follow-ing matrix of 
-values is obtained: v3v2 0BBBB@ 4 � 2 � 0� 8 � � 5� 13 12 � �19 � � � �� � 22 21 � 1CCCCA
10



The resulting constraints in the form as proposed by E. Marchiori are givenbelow: 5 � v2 � v3 6= 0 5 � v2 � v3 6= 125 � v2 � v3 6= 2 5 � v2 � v3 6= 135 � v2 � v3 6= 4 5 � v2 � v3 6= 195 � v2 � v3 6= 5 5 � v2 � v3 6= 215 � v2 � v3 6= 8 5 � v2 � v3 6= 22I prove that the above transformation produces an equivalent CSP' from theoriginal CSP 7. First, notice that for every constraint ci;j in CSP and for everyhpr; psi which violates ci;j the constraintc0i;j � jDj � vi � vj 6= jDj � pr � psis in CSP'. Thus hpr; psi violates c0i;j . So we have shown that if CSP is vio-lated, CSP' is also violated. Vice-versa, suppose c0i;j in CSP' is violated by theassignment hp0r; p0si. ThenjDj � p0r � p0s = jDj � pr � ps;jDj � (p0r � pr) = p0s � ps:But, by the way I de�ned D, we have D = f1; 2; � � � ; jDjg. Thus if p0r 6= pr thenjp0s � psj � jDj which is impossible, so p0r = pr and p0s = ps, so hp0r; p0si violatesCSP'.The technique, as explained above, can be used with every domain size andis also useful for CSPs with non-uniform domain sizes .It is interesting to note that, with the technique as explained above, it isnot necessary to apply the elimination and splitting step as was proposed byE. Marchiori. This is mostly due to the random CSP instance generator and thealready simpli�ed format of its output. If more traditional CSPs were involved,like the n-queens problem and the �ve-houses puzzle that were used by E. Mar-chiori, the two steps of constraints processing is useful. The question remainshowever if rewriting these problems into the format that the CSP instance gen-erator uses as output | after which a computer can apply the above mentionedtechnique to rewrite the constraints | is not more e�cient than using the twoconstraint processing steps that must be done by hand.Another interesting note is that all con
icts in the binary CSP are translatedinto one constraint each. This means that for a CSP with a large number ofcon
icts | problems with high constraint tightness and/or density | a largenumber of constraints have to be satis�ed. The type of constraint howeverrequires a low execution time to check and introduces only linear overhead tothe original problem. The question remains however if the total overhead of an7i.e., if a complete assignment of values satis�es CSP', then it also satis�es the original CSP,and vice-versa 11



actual GA trying to solve a CSPwith high constraint tightness and/or density doesnot slow the solving process down too much. The translation method proposedhowever uses just a little storage-space as only the 
-values of the con
icts(constraints) have to be stored and only simple calculation-steps are necessaryto check these constraints. This should ensure an acceptable execution-time.3.2 Dependency propagationWhen all the constraints are converted into the chosen form, the repair rulefor the implementation of dependency propagation in the GA, can be chosen. E.Marchiori proposes the following repair rule:if � � pi � � � pj = 
 then modify pi or pjIn [20], the repair rule is tested as quite e�ective when the choice of the variableto be changed was done randomly, I however propose a variation on this byusing a simple and straightforward bias system to determine which of the twovalues (pi or pj) should be modi�ed. In general there are three issues to therepair rule that should be addressed.3.2.1 Selecting the variableThe �rst issue is, selecting the variable that should be repaired. This issue canbe resolved by looking at the con
ict matrix. The variable with the smallestnumber of zeros on its row or column is the most restricted, simply because thereare more values that result in a con
ict if there are just a few zeros comparedto a value that has many zeros on its row or column. Counting the zeros in thecon
ict matrix for every value of the two variables is enough to determine whichone of the variables is to be changed. With an equal number of zeros, a randomchoice is made. By changing the most restricted variable I hope to improveindividuals with variables that are hard to satisfy, early on in the process. Byrepairing the most restricted variable I also hope to �nd solutions even whenthe problem has a high constraint tightness and/or density.3.2.2 Selecting the valueThe second issue is selecting the value that the variable should be changed to.Because I know the number of feasible values that the variable has, I can makea random selection among these values. By making a random selection at thispoint, I hope, in some way, to counter the greedy selection of the variable.Note that, although the choice is random, I make sure that only a value thatintroduces no new con
ict can be chosen, thus ensuring that a con
ict beforethe repair rule was applied to the individual is not replaced by another one,furthermore, the old value of the selected variable can not be chosen as thisvalue is not feasible. It does not mean that the repair rule can not introducenew con
ict, as the newly selected value of the variable can violate anotherconstraint. 12



I will give an explanation using a small example. Let us look again at thecon
ict matrix showing a constraint between variable v2 and v3:v3v2 0BBBB@ 1 0 1 0 10 1 0 0 10 1 1 0 01 0 0 0 00 0 1 1 0 1CCCCAIf v2 has value 3 and v3 has value 2 (v2 = 3 and v3 = 2), a con
ict occurs (inboldface). The repair rule now counts the number of zeros on row number 3(number of non-con
icts of v2) and on the column number 2 (number of non-con
icts of v3) and repairs the variable with the smallest number of zeros thisway the most restricted variable will be repaired. The new value of the variableis selected by taking a random choice among the feasible values of the variable.Feasible values are represented in the matrix by zeros, meaning non-con
ict,therefore selecting a random zero-entry on the row or column that representsthe variable is enough to �nd a value. In the example, both v2 and v3 have 3zeros in their row and column, a variable is therefore selected randomly. Then arandom number between 1 and 3 is taken. Suppose that variable v2 is chosen andthe random number is 2. The value of v2 after the repair rule for this constraintwould be 4, v3 would stay unchanged. Then the next violating constraint in theindividual would be repaired.3.2.3 Constraint orderAnother concern about the repair rule is in what order the di�erent constraintswill be repaired, constraint order. For instance, suppose I have a number ofconstraints that restrict the search space severely. If those constraints will berepaired early in the repair process, there is a high probability that the repairwould be undone later in the repair process. The other way round is alsopossible. If the most restricting constraints would be repaired late in the repairprocess, they could restrict the search so severely early on, so that a solutionwill never be found, premature convergence. I propose a | total random |strategy which should insure that neither possibility can occur. The easiestway to do this is to take a random permutation of all constraints every time anindividual is repaired. In this way each individual is repaired with a di�erentrandom constraint order and therefore population diversity should be secured,negating both earlier stated problems.3.3 Other considerationsThe two sections above cover the two main issues about ESP-GAs. Other topicsinvolved when using a GA will be discussed below. They involve the choicesmade on representation, crossover, mutation, selection and �tness.13



The representation chosen is a set of integers. There will be n integers, eachrepresenting a di�erent variable of the binary CSP. When a solution is found,the values of all integers break none of the constraints that were made by theconstraint processing technique discussed earlier.I have chosen the traditional one-point crossover for the crossover operatorfor ESP-GA. Although, in general, this crossover is considered to limit the searchof the search space, I consider this positive because it limits the e�ect that thecrossover operator has on the search process while it enhances the visibility ofthe e�ect of the repair rule. I have not examined what the e�ect on the resultsof ESP-GA is of having another crossover operator (like the uniform randomcrossover operator), on the results of ESP-GA.I have used the mutation operator where the value of one variable is changedrandomly per selected individual. Both variable and individual selection is donerandomly. This mutation operator is chosen mainly to remain close to theoriginal ESP-GA.I have programmed ESP-GA as a pure steady state GA. This means that twoselection methods can be distinguished, one selection method for selecting theparents of the genetic operators and one for selecting the content of the nextgeneration. I have chosen the selection method for the parents of the geneticoperators based on a linear ranking scheme while I chose the best individuals ofthe previous population, including the children of the genetic operators, as theselection method for the next generation. Although E. Marchiori has chosenroulette wheel selection for the original ESP-GA, I have not done so because Ihope that by choosing these selection methods I hope to eliminate some of therandom `noise' that the original selection method introduces.The �tness function I have chosen is the number of variables that violate aconstraint. The �tness maximum is therefore n when all variables violate one ormore constraints and a solution is found with a �tness value of zero, indicatingthat no constraints are violated. It is therefore obvious that a minimum has tobe found. I suggest however, that | in later studies | the e�ect of using a dif-ferent �tness-function is examined, namely the number of violated constraints.Although this �tness function gives the GA a much better insight in how far (o�)it is in solving the CSP, I have not used it now because of the large numberof constraints it has to check every time it is calculated when trying to solveproblems with a high tightness and density. Although the worst case complexityof the �rst �tness function is the same as with the second �tness function, theprobability that the �rst �tness function has to check all constraints seems tobe smaller. Note however that, the further in the search, more and more con-straints will be satis�ed (as the GA comes closer to the solutions) and thereforethe �rst �tness function will more and more revert to the worse case scenario.When a solution is found, all constraints have to be checked and the two �tnessfunctions have the same complexity.
14



4 Solving CSPs with H-GAsIn [7], Eiben et al. investigate the possibility of using heuristics with GAs.Heuristics are commonly used in CSPs and are already available for most classicalCSPs. Therefore, using them would be a natural solution to help solve CSPs whenusing GAs. In [7], two heuristic operators are speci�ed: an asexual operator anda multi-parent operator. Both are used to maintain the constraints in CSPs andhave been tested on two examples: n-queens and the graph 4-coloring problem.In this thesis I will call the GAs as suggested by Eiben et al. heuristic GAs: H-GAs.The basic idea in [7] is to combine the essential probabilistic mechanismsin classical GAs with common heuristics used in traditional CSP solving meth-ods. In H-GAs this is done by replacing the classical uniform random mechanismof the crossover and mutation operator by a crossover or mutation mechanismbased on heuristics that take into account the prescribed constraints. The uni-form random part of the GA and the new heuristic-based components are usedto counterbalance each others de�ciencies. The application of heuristics canimprove the performance of the blind random mechanism while the randomcomponent can compensate the strong bias that is introduced by the heuristics.As stated earlier, the use of traditional genetic operators have a negativee�ect on solving CSPs with GAs. Because they traditionally use randomness toalter individuals, they are blind to the constraints of the CSPs. This can result inaltering an individual that satis�es some constraints in one population into anindividual that violates those constraints. Instead of repairing an individual, asis done in ESP-GAs, in [7], Eiben et al. propose to change the genetic operators ina way that they maintain the constraints that an individual satis�es and changethe variables that do not. This is done by two new genetic operators whichinclude heuristics: an asexual operator that only changes one single individualand a multi-parent operator that introduces an individual based on two or moreparents.4.1 Asexual heuristic operatorThe asexual heuristic operator selects a number of variables in a given individual,then selects new values for these variables. The amount of variables to bemodi�ed, the criteria for selecting these variable and the criteria for the newvalues of these variables are the de�ning parameters of the possible asexualoperators. Di�erent asexual operators can be denoted by the triple (n; p; g)where n indicates the number of variables to be modi�ed | being either 1,2or # (with # meaning that the number of variables to be altered is chosenrandomly but is at most one-fourth of all variables in the individual) | and pand g indicate the selection criteria for variable and value selection respectively,denoted by an r for random selection and a b for a heuristic biased selection. Inthe H-GAs I study in this thesis, I will study an asexual operator that has thefollowing de�ning parameters: (#; b; b), meaning that each time the operatoris used, up to one fourth of the variables will be changed, its variables to bechanged and the values they will be changed to are chosen using a heuristic.15



4.1.1 Selecting the variableIn [6] some measures or heuristics for variable selection are mentioned:1. number of constraints that are relevant to a speci�c variable, the cardi-nality of that variable;2. number of unsatis�ed constraints that are relevant to a speci�c variable,the unsatis�ed cardinality of that variable8;3. average or minimum tightness of the constraints that are relevant to aspeci�c variable;4. number of possible values that a speci�c variable has;95. number of possible values that a speci�c variable has by arc to othervariables; the number of arc-consistent values.In [7], Eiben et al. choose to implement option 2, the asexual heuristic operatorwith a heuristic bias system that changes the variable that has the largest num-ber of unsatis�ed constraints that are relevant to the variable. It is expectedthat by changing this variable the largest improvement to the individual can bemade.4.1.2 Selecting the valueAlso in [6] some measures or heuristics for value selection are mentioned:1. the number of satis�ed constraints that are relevant to the variable pervalue, the satis�ed cardinality of the variable per value;2. total number of possibilities for satisfying all relevant constraints;3. the number of possibilities for satisfying the tightest constraint.In [7], Eiben et al. choose to implement option 1, the value selection for theasexual heuristic operator with the measure that counts the number of satis�edconstraints that are relevant to the variable, calculated per di�erent value inthe domain. It is expected that by using this measure on value selection, thepossibility of introducing a (new) con
ict in the individual is the smallest10.8This heuristic needs an instantiation to check if a constraint is satis�ed or not.9This heuristic is used for CSPs with a non-uniform domain size as otherwise it would simplybe jDij.10Note that this heuristic has to be calculated for every possible value the variable can have,thus m times
16



4.1.3 ImplementationThere are three issues to the implementation of the asexual heuristic operator:First issue is selecting the number of variables that will be chosen to bealtered. This is implemented by taking a random number between one anddn=4e every time the asexual heuristic operator is used. Variable selection isrepeated that many times.The second issue is the implementation of variable selection in such a waythat it works best with the output generated by the CSP instance generator. Ihave found that the easiest way to do this is by calculating a constraint ma-trix. With the constraint matrix it is possible to �nd simply and quickly allconstraints relevant to a variable. The heuristic has to check for every variablein the individual how many of the relevant constraints to the variable are cur-rently satis�ed by the values of the variables in the individual. This is doneby checking for every relevant constraint, if, for the variables of the constraint,the values of the individual result in a con
ict. This is done by checking if thecon
ict matrix of the constraint has a non-zero value on the entry speci�ed bythe values of the variables. The variable with the most unsatis�ed constraintsfound in this way, is chosen to be changed.An example may explain more clearly how this measure works and how Ihave implemented it. As said earlier, the easiest way to �nd the set of relevantconstraints to a variable is by looking in the constraint matrix. Using theongoing example and the output as it is given in appendix A, the followingconstraint matrix can be calculated:v1 v2 v3 v4 v5c2;3 0 1 1 0 0c2;5 0 1 0 0 1c3;4 0 0 1 1 0c3;5 0 0 1 0 1c4;5 0 0 0 1 1For individual hp1; p2; p3; p4; p5i = h1; 2; 3; 4; 5i, in the con
ict matrix of c3;4and c4;5 on entries (3; 4) and (4; 5) a non-zero entry was found (C3;4 = 1 andC4;5 = 1). All other constraints have a zero-entry in the con
ict matrix fortheir respective variables (c2;3(2; 3) = 1, c2;5(2; 5) = 1 and c3;5(3; 5) = 1). Thismeans that only c3;4 and c4;5 are unsatis�ed. Knowing this, it is clear that v1and v2 have no unsatis�ed relevant constraints, v3 and v5 have one unsatis�edrelevant constraint while v4 has two unsatis�ed relevant constraints. Thereforethe measure will select v4 as candidate for a change of its value.The third and �nal issue is the implementation of the value selection measureso that it works best with the output generated by the CSP instance generator.The value selection heuristic counts for every constraint relevant to the variableand the whole domain minus its current value, how many of relevant constraintsare satis�ed. Using the constraint matrix again is a simple way to calculate thisheuristic.Using the ongoing example, the number of satis�ed relevant constraints of17



v4, that was selected with the previous measure, will be calculated. From theconstraint matrix it is clear that constraints c3;4 and c4;5 are relevant to variablefour. The con
ict matrix of these combinations of variables are:v4v3 0BBBB@ 0 1 0 0 00 1 0 0 10 1 0 1 01 1 1 0 00 1 0 0 0 1CCCCAand v5v4 0BBBB@ 1 0 1 1 10 1 1 0 01 0 0 0 01 1 1 1 11 1 0 1 1 1CCCCAAgain for individual hp1; p2; p3; p4; p5i = h1; 2; 3; 4; 5i it is now clear that I haveto count the number of con
icts of variable v4 that it has with variables threeand �ve. The row to be checked with constraint c3;4 and the column to bechecked with constraint c4;5 are boldfaced. As the value of 3 for v4 has nocon
icts with either of the other variables, it will be the new value for v4. Allother values have at least one con
ict with one of the constraints11.4.2 Multi-parent heuristic operatorThe multi-parent heuristic operator of H-GAs is a multi-parent operator thatuses a heuristic to determine which value of its parents is selected for its child.The basic mechanism of multi-parent operators is scanning [9]. This meansthat the operator examines all variables of the parents consecutively and pervariable chooses one of them for the child. By using special marker updatemechanisms, e.g. shifting the markers to the �rst value that does not yet occurin the child, the scanning technique can be adjusted to special types of problemslike permutation based problems, such as routing or scheduling. Scanning canalso be enriched by problem dependent heuristics relying on extra information,e.g. edge length for routing problems. There are several ways to choose betweenthe parent variables12:� uniform random; choosing the value at random, no heuristic is used;� occurrence base; the value that occurs the most is represented in the child);� biased on the �tness of the parent;11Value 4 of variable v4 is not boldfaced and is not checked. This to ensure that a newvalue for the variable will be chosen.12Note that some of the basic choices that were also present in value selection are also presenthere: a random strategy, and using problem independent or problem dependent heuristics18



� using a problem dependent heuristic.The implementation of the multi-parent heuristic operator is done in a waythat any number of parents, from two up, can be used. For the value selectionmethod I will use a problem dependent heuristic. Earlier I've given alternativesfor value selection and the same one I have used with the asexual heuristicoperator I will use here as well: the number of satis�ed constraints that arerelevant to the variable. The di�erence with the asexual heuristic operator isthat the heuristic will not evaluate all possible values but only the values thatare represented by the parents. Note that Eiben et al. uses the same heuristicin the original H-GA in [7]. An example of the value selection heuristic is alreadygiven earlier, I will not repeat it here.4.3 Other considerationsThe representation used for the individuals in this version of the H-GA is a stringof integers each representing a di�erent variable. A solution is therefore a in-dividual which values violate none of the constraints. This representation ofan individual is identical to that of ESP-GA. The di�erence between H-GAs andtraditional GAs is of course the use of the two new heuristic operators that re-place the original crossover operator and/or the mutation operator. If only oneof the original operators is replaced however, the other still remains. The orig-inal crossover operator is the traditional one-point crossover while the originalmutation operator changes a random variable to a random value in its domain.Fitness evaluation is done by counting the number of variables that violate anyof their relevant constraints. The same remark as was made with regard tothe �tness function in ESP-GAs can be made here also: counting the number ofviolated constraints might give the GA a better insight in how far (o�) it is to asolution. Again I have not done so now because of the time-consuming natureof the �tness function. As was done in the ESP-GA I have used a linear rankingscheme as the selection-method.The heuristics used in the two heuristic operators can be quite expensiveto use. This can be changed in a positive way by precalculating the con
ictmatrices so that looking up a single bit in �ve di�erent arrays can be exchangedfor looking up a single byte in a single array and then using bitshifts to gainthe speci�c bit. This means doing a lot of work (mostly bitshifts to compressthe con
ict matrix) at the start of the solving process but doing signi�cantlyless calculation during the solving process, while at the same time, reducing theamount of storage needed. I have not used this method mostly for simplicityreasons, thereby sacri�cing mainly processortime. It may be interesting howeverto study the improvement on the calculating time in applications where this issueis more important.
19



5 Solving CSPs with Arc-GAsIn [31, 32] M.C. Ri�-Rojas describes her alteration of the classic GA for solvingCSPs. Noting that until now little development in the �eld of solving CSPs withGAs using the constraint network was done, she describes a GA that solves CSPsby altering the �tness function [31] and the genetic crossover and mutation oper-ators [32]. The �tness function, called arc-�tness function, was altered in such away that individuals, whose values have more arcs that satisfy their constraints,have a preference over other individuals. To �nd the sets of arcs to be examined,the arc-�tness function uses information derived from the constraint network.The genetic operators, called the arc-crossover operator and the arc-mutationoperator, also use information about the constraint network to generate o�springthat has the best combination of the values of the parent variables. This is doneby de�ning two partial �tness functions for both operators.The basic idea of the arc-�tness function is to give preference to individualsthat have more arcs in the constraint network which do not violate their con-straint. This is done by evaluating all constraints in the CSP. Every constraintis checked if the values of the individuals satisfy it or not. If the constraintis satis�ed, the so called error evaluation of the constraint is zero. If not, thenumber of relevant variables13 and the variables that are connected by arc tothese variables, are counted.The set of these variables I call the error evaluation set of variables of theconstraint and it is found by examining the constraint network. The number ofvariables in this set is independent of the individual, it is however dependent onthe instantiation of the individual if the set is calculated over a partial instanti-ation, as constraints whose variables are not instantiated | or not completelyinstantiated | are not taken into account. The cardinality of the error evalua-tion set, or the number of variables in the set, is called the error evaluation ofthe constraint. The sum of the error evaluations of all violated constraints |the cardinality of the error evaluation sets of all constraints | is the arc-�tnessvalue of the individual.A picture is useful when explaining which variables are added to the errorevaluation set of variables. In picture 1 nodes that are �lled-in are instantiatedvariables while nodes that are not �lled-in are not instantiated. Suppose I amcalculating the error evaluation set of variables of constraint C1, we can see thatits variables v1 and v2 are connected with variables v3, v4, v5, v6 and v7. If oneof the two, or both of the variables will change, constraints C2, C3, C4, C5 andC6, may become unsatis�ed, while they could be satis�ed now. The resultingerror evaluation set of variables is: fv3; v4; v5; v6; v7g 14.If the error evaluation set of variables was calculated over a partial instantia-tion, as can happen in the arc-crossover operator, the resulting error evaluationset of variables would be: fv3; v5; v7g, as only the related variables of completely13in a binary CSP there are two relevant variables to every constraint14When calculating the error-evaluation set of variables for �tness evaluation, all variablesare instantiated. The instantiation in �gure 1 is added for use with error-evaluation over apartial instantiation. 20



instantiated constraints are counted.~ ~ ~~ �
��~
�
��aaaaa����� ����aaaaaC1C2C3 C4 C5C6v1 v2v3v4 v5 v6v7

Figure 1: Explanatory picture of the error evaluation set of variables.The basic idea of the arc-crossover operator is to generate a new child fromtwo randomly selected parents. The child inherits the best combination by arcof the parent's values. The arc-crossover operator makes an iterative procedureover the constraints by arc. The constraints are ordered based on the error-evaluation of the constraint, thereby making sure that the �rst arc to analyze isthe heuristically hardest constraint to satisfy in the constraint network becauseit has the highest value in the error evaluation function.The basic idea of the mutation operator is to generate a new individual byaltering a randomly chosen variable in the individual to a new value. This valueis selected by calculating for every constraint | that is relevant to the variableselected | its error evaluation value for every possible value that the selectedvariable can have.As stated earlier, the arc-�tness function, the arc-crossover operator andthe arc-mutation operator all have their own (partial) �tness functions. The�tness function is already explained earlier which leaves the (partial) crossover�tness function and the (partial) mutation �tness function. Both have sets ofconstraints, that the �tness functions are calculated over. Both sets of con-straints as the corresponding �tness functions will be discussed below, all arealso de�ned mathematically by M. Ri�-Rojas in [32].The set of constraints needed for the partial arc-crossover �tness function,called the set of crossover instantiated constraints, is assembled started by aconstraint and then checked to see if all relevant variables are instantiated.If this is the case, add the constraint to the set. Then every constraint thatshares a variable with this constraint is also checked to see if its variables areall instantiated. If this is the case, the constraint is also added to the set15.In short, one could say that the set of crossover instantiated constraints are allrelevant instantiated constraints to the two variables of the starting constraint.Again, a picture may explain the set of crossover instantiated constraintsbetter. I have copied the picture that I used for explaining the error evalu-ation set of constraints in picture 2, because the set of crossover instantiated15The set is assembled with a constraint as its start because the arc-crossover operator usesa iterative procedure by constraint. 21



constraints also starts with a constraint. With the set of crossover instantiatedconstraints, there is always an instantiation. Again, �lled-in nodes are instanti-ated while those that are not, are also not instantiated. Only constraints thathave all variables instantiated are added to the set. Suppose I want to calculatethe set of crossover instantiated constraints of constraint C1, we �nd the set:fC1; C2; C4; C6g. ~ ~ ~~ �
��~
�
��aaaaa����� ����aaaaaC1C2C3 C4 C5C6v1 v2v3v4 v5 v6v7

Figure 2: Explanatory picture of the set of crossover instantiated constraintsThe partial crossover �tness function (c�) of a speci�c constraint is the sumof all error evaluation values of the constraints in the set of crossover instantiatedconstraints over that constraint.The set of constraints needed for the partial arc-mutation �tness function,called the set of mutation instantiated constraints, is assembled started by avariable. All relevant constraints to the variable are checked if they are instan-tiated, and if so added to the set16. Again, in short, one could say that the setof mutation instantiated constraints are all relevant instantiated constraints tothe starting variable.Again, I will use a picture to explain how the set of mutation instantiatedconstraints is calculated. Picture 3 is unlike the �rst two pictures because theset of mutation instantiated constraints is calculated with a variable as startingpoint. Like the two earlier pictures, the instantiated variables are pictured like�lled-in nodes while uninstantiated variables are pictured like nodes that are not�lled-in. Suppose I want to calculate the set of mutation instantiated constraintsof variable v1, then only the completely instantiated constraints C1, C2 and C4are added to the set. The resulting set of mutation instantiated constraints isthen: fC1; C2; C4g.The partial mutation �tness function (m�) of a speci�c variable is the sum ofall error evaluation values of the constraints in the set of mutation instantiatedconstraints over the given variable.It is important to note that di�erent values for the variables in both the arc-�tness function, the partial crossover �tness function and the partial mutation�tness function produce di�erent error evaluation function values because theychange the number of variables in the error evaluation set of constraints since16Here the set is assembled with a variable as starting point because the arc-mutationoperator operates on variables 22



~~ ~
~�
�� �
���
��QQQQ.."""" ����QQQQC1C2 C3 C5C4C6v1v2v3 v4 v5 v6v7

Figure 3: Explanatory picture of the set of mutation instantiated constraintsthey can satisfy other constraints. Di�erent instantiations result of course alsoin di�erent results for the partial �tness functions.After these de�nitions the algorithm for the arc-crossover operator can bedescribed as follows:First two parents are selected randomly. At �rst, the child to be made fromthese parents has no variables instantiated. With the evaluation of the �rstconstraint in the ordered set of constraints, two variables will be instantiated.Later in the process, some variables will already be instantiated, the othervariable to be instantiated will be chosen between the two parents based on thelowest value for the partial mutation �tness function (m�) of the variables. Ifnone of the variables are instantiated there are three possible choices:� the constraint is satis�ed in both parents: assign the values of the con-straint from the parent with the best �tness evaluation;� the constraint is satis�ed for one parent: assign the values of the constraintfrom this parent;� the constraint is not satis�ed in both parents: assign the best combinationof values of variables from both parents based on the partial crossover�tness function (c�).The algorithm of the arc-mutation operator can be described by randomlyselecting a variable to mutate and then selecting the value of the variable tobe changed by applying the partial mutation �tness function to all values ofthe domain except the present value. The value with the smallest value for thepartial mutation �tness function will be chosen.5.1 The Arc-�tness functionIn the implementation of the �tness function as well as the crossover and mu-tation �tness functions, it is convenient to have a constraint matrix. With theconstraint matrix, constructing the error evaluation set of constraints is simple.Finding the variables that are relevant to the constraint under investigation23



is done by searching the two non-zero entries in the constraint matrix on therow for the appropriate constraint. Finding the constraints that share a variablewith the constraint under investigation is done by �nding the non-zero entries inthe columns of the two relevant variables of the constraint. The constraints thatare relevant to the thus found variables are the variables that share a variablewith the constraint under investigation. The error evaluation set of variables isthen found by adding to it all variables of the thus found constraints.The �tness value of a constraint is found by only counting those variables inthe error evaluation set of variables that belong to a constraints whose valuesin the individual under investigation violate the constraint to whose arc thevariables belong. If all constraints in the CSP are checked in this way, theresulting error evaluation value over all these constraints is the �tness value ofthe individual.Once more I will use the ongoing example to clarify the procedure. Theconstraint matrix has already been given in the section about H-GAs:v1 v2 v3 v4 v5c2;3 0 1 1 0 0c2;5 0 1 0 0 1c3;4 0 0 1 1 0c3;5 0 0 1 0 1c4;5 0 0 0 1 1When investigating individual hp1; p2; p3; p4; p5i = h1; 2; 3; 4; 5i it is found thatconstraints c3;4 and c4;5 are violated. Let's start with constraint c3;4, its tworelevant variables are v3 and v4. Constraint c3;4 shares v3 with constraints c2;3and c3;5, therefore changing variable v3 in any way will have e�ect on these twoconstraints as well. Constraint c3;4 shares v4 with constraint c4;5 only. To calcu-late the set of error evaluation of constraint c3;4 is done by naming the variablesof these four constraints (c3;4; c2;3; c3;5 and c4;5) and is: fv2; v3; v4; v5g. Theerror evaluation of constraint c3;4 is the cardinality of this set and is therefore4. The same can be done to constraint c4;5. It's `sharing' constraints are c3;4,c3;5 and c2;5 and its set of error evaluation variables is: fv2; v3; v4; v5g, and itserror evaluation is 4. The error evaluation of the given individual is calculatedby adding all error evaluations of all unsatis�ed constraints of the individual:4 + 4 = 8.5.2 Arc-mutation and Arc-crossoverWhen calculating the error evaluation set of constraints and thus the errorevaluation of a constraint I use the complete instantiation while in arc-crossoverand arc-mutation, the partial instantiation is used. This can be calculated by notincluding a number of variables in the constraint matrix. This is implementedby keeping a list of variables that are instantiated. Before adding a variable toany set (this includes the crossover and mutation sets) this list is checked. Ifthe variable is not on the list, it will of course not be added to the sets. The24



same can be said about a constraint with one of its variables not in the partialinstantiation, it also will not be added to the set.Implementing the set of crossover instantiated constraints is very similar tocalculating the error evaluation set of a constraint. Again, I begin by lookingon the row of a constraint and adding the variables of the constraint if they areinstantiated. After this I check what constraints share a variable by adding toa list, the constraints that have a non-zero entry in the column of the �rst twovariables. After this I add the original constraint to the list and the crossoverinstantiated constraints list is complete. The main di�erence between the errorevaluation set of a constraint and the crossover instantiated constraints is thatthe latter is a set of constraints while the �rst is a set of variables. The methodof extracting the information however is nearly the same.Calculating the partial crossover �tness value of an individual is done bycalculating the �tness value of the individual but only evaluating the constraintsin the set of crossover instantiated constraints. This means that the �tnessfunction as explained earlier is used only for checking the instantiated variables.Again, let's use an example to clarify what I have just explained. With thepartial crossover �tness function, I too need the constraint matrix:v1 v2 v3 v4 v5c2;3 0 1 1 0 0c2;5 0 1 0 0 1c3;4 0 0 1 1 0c3;5 0 0 1 0 1c4;5 0 0 0 1 1The largest di�erence with the arc-�tness function is however, that the crossover�tness function is calculated over a partial instantiation. In this example I usethe partial instantiation: (v3; v4; v5). Suppose I want to calculate the partialcrossover �tness over constraint c3;5. Both its variables are instantiated sothe constraint is added to the set of crossover instantiated constraints. Theconstraints that share variables v3 with constraint c3;5 are c3;4 and c2;3 butonly c3;4 is completely instantiated and therefore added to the set of crossoverinstantiated constraints. The constraints that share variable v5 with constraintc3;5 are c2;5 and c4;5 but this time only c4;5 is completely instantiated andtherefore added to the set. The set of crossover instantiated constraints is now:(c3;5; c3;4; c4;5). The crossover �tness function is now calculated by using thesame method as with the arc-�tness function but now only calculating the errorevaluation over the constraints in the set of crossover instantiated constraints.As this is explained earlier, I will not repeat it here.Implementing the mutation instantiated constraints is again very similar tocalculating the crossover instantiated constraints in that it involves a set ofconstraints and uses the same two basic search actions along the rows andcolumns of the constraint matrix. The di�erence however lies in the fact thatthe search does not start with a speci�c constraint but with a speci�c variable.The search starts by checking the constraints that are relevant to the variable.25



Then all constraints are checked to see if they are completely instantiated, bychecking if the other variable of the constraint is instantiated. All completelyinstantiated constraints are added to the set.As it was the case in the partial crossover �tness function, the partial muta-tion �tness value of an individual is calculated by calculating the �tness valueof the individual but only evaluating the constraints in the set of mutationinstantiated constraints. Again only a partial instantiated �tness function isused.Here also I will use a small example to clarify the method. I will not changethe preliminaries from last example. The instantiation is still: (v3; v4; v5), theindividual is still: h1; 2; 3; 4; 5i and the constraint matrix is of course still:v1 v2 v3 v4 v5c2;3 0 1 1 0 0c2;5 0 1 0 0 1c3;4 0 0 1 1 0c3;5 0 0 1 0 1c4;5 0 0 0 1 1Suppose I want to calculate the partial mutation �tness value for variable three(v3). Constraints c2;3, c3;4 and c3;5 have this variable. Constraint c2;3 howeveris not completely instantiated and will therefore not be included into the setof mutation instantiated constraints. This set is now: fc3;4; c3;5g. The partialmutation �tness value of variable v3 is now calculated by taking the arc-�tnessvalue over the individual while only checking the constraints in the set of mu-tation instantiated constraints.With Arc-mutation I randomly select a individual and randomly select thevariable that I want to mutate. Then I calculate the partial mutation �tnessvalue for every value in the domain of that variable excluding the current value.The new value for the variable will be the value with the lowest partial mutation�tness value.Before Arc-crossover can be done, all constraints have to be ordered aftertheir error evaluation value, highest value �rst. Then I randomly select twoparents and start the crossover process. At �rst no variables are instantiatedbut every time a constraint is checked, new variables will be instantiated. Thecrossover process is begun by checking the �rst constraint in the ordering. The�rst check that is made is checking how many parents are yet instantiated. Ifonly one parent is not instantiated yet, the child variable is chosen among theparents by calculating the mutation �tness function of the parents and choosingthe variable with the lowest value. If both parents are not instantiated yet,three options can occur based on how the constraint is satis�ed in the parentindividuals. If the constraint is satis�ed in both parents, the two variables arechosen from the parent with the best �tness value. If the constraint is satis�ed inonly one of the parent individuals, the value of the variables to be instantiatedare copied from this parent. If the constraint is not satis�ed by any of theparent, the values are combined with each other (there are now two possible26



combinations) and they are evaluated by the crossover �tness function. Againthe combination with the lowest value is copied into the child individual.5.3 Other considerationsM.C. Ri� Rojas, altered the traditional GA in three ways. She replaced theoriginal �tness function by an arc-�tness function which gives preference to in-dividuals that satisfy more arcs in the constraint network. Next to that, shereplaces both the traditional crossover and mutation operators with counter-parts that look to the constraint network for better evaluation. One thing thatremained the same was the integer representation of the individuals. Again Ihave used the same representation that was used in ESP-GA, an individual isa string of integers that represent each a variable in the CSP. Crossover andmutation rate will be discussed in the section about the experimental setup.6 Software description and experimental setupIn the following three subsections, the speci�c software description and exper-imental setup of all three methods is given. However, in general, some thingsabout the software description and experimental setup can be said.An e�ort was made to incorporate the speci�c details of the three methodsinto a GA that is well known. In this way the di�erences between the threemethods can be pointed out better because all other parts of the GA have wellknown characteristics. The GA I have chosen was a pure steady state GA with theclassic one point crossover and total random mutation. The selection methodfor the parents of the genetic operators uses linear ranking strategy while theselection method of the next generation is to select the best individuals fromthe intermediate population.A pure steady state GA produces per generation from a number of parentsan equal number of children with the crossover operator which in turn all getmutated by the mutation operator. These children are then added to the currentpopulation where they compete with the rest of the population, including theirparents, to get in the next generation, elitist selection.One point crossover takes two parents. Then it selects a single crossoverpoint. The �rst child is constructed by taking the �rst part up to the crossoverpoint from the �rst parent and taking the rest from the second parent. Theother child is made by reversing the process, taking the �rst part from thesecond parent and the rest from the �rst parent.The total random mutation operator produces a single child from a singleparent by randomly taking a single variable in the individual and assigning arandom value from its domain to it.In this section I use small tables to systematically explain what parts in thegeneral GA are used and which parts are exchanged by parts from the di�erentmethods. Table 2 shows the short overview for the general GA.27



Crossover operator One-point crossoverMutation operator Total random mutationFitness function Number of violated constraintsParent Selection method Linear ranking selectionSelection method Elitist selectionTable 2: Short overview of the experimental setup of the basic-GAI have used the GA-library Leap for producing the three GAs. Using thislibrary, that was developed by J. van Hemert, meant that I only had to imple-ment the parts of the GAs that were di�erent from the GAs already in the library.The library was linked with the random CSP instance generator, which was alsodeveloped by J. van Hemert. This made checking if there was a constraint or acon
ict in the CSP fairly easy. In the GA-library, the above mentioned `standard'GA was already implemented and that implementation was used.The general setup of the experiment was to have population size of 10 andperform per generation a single crossover operation and two mutation opera-tions, resulting in three �tness evaluations per generation.6.1 Software description and experimental setup ESP-GAAs was explained in section 3, ESP-GA is an adjustment of a GA because it addsto the GA a repair algorithm that repairs all individuals just before the selectionof the next population. None of the operators or selection methods are changedby this method therefore the table of this methods is very similar to the tableof the basic GA, it only adds an entry to the extra line. The repair algorithmis activated just after reproduction, but before the new population is chosen.By repairing the newly created individuals I hope that the exploration by thegenetic operators is enhanced by repairing the new individuals.Crossover operator One-point crossoverMutation operator Total random mutationFitness function Number of violated constraintsParent Selection method Linear ranking selectionSelection method Elitist selectionExtra Repair ruleTable 3: Short overview of the experimental setup of ESP-GA6.2 Software description and experimental setup H-GAIn [7], Eiben et. al do not describe a GA as such, but describe two new operators,the earlier explained heuristic asexual and heuristic multiparent operators. Not-ing that the heuristic asexual operator can also be used as a mutation operator28



| as it changes a single individual | I see three possibilities for a GA that Ihave investigated:1. Use the heuristic asexual operator as a replacement of the crossover oper-ator in the traditional GA.2. Use the heuristic multiparent operator as a replacement of the crossoveroperator in the traditional GA.3. Use the heuristic multiparent operator as a replacement of the crossoveroperator and the heuristic asexual operator as a replacement of the mu-tation operator in the traditional GA.All three versions were implemented and compared to the other two methods.Version 1 Version 2 Version 3Crossover operator Asexual Multi Multiheuristic parent parentoperator operator operatorMutation operator Total Total Asexualrandom random heuristicmutation mutation operatorFitness function Number of violated constraintsParent Selection method Linear ranking selectionSelection method Elitist selectionExtra NoneTable 4: Short overview of the experimental setup of the three versions of H-GA6.3 Software description and experimental setup Arc-GAArc-GA is an extensive overhaul of the general GA. It changes both the crossoverand the mutation operator and uses a new �tness function to evaluate the pop-ulation. Although in [31] a new selection method is also proposed, I have notimplemented it. I have done this for two reasons. One reason is that this methodwas not used in [32], the other reason is that the new selection method was notdesigned for steady state GAs. The new selection method was not mentioned in[32] because most of the additional abilities of the this selection method whereincorporated in the �tness function in [32]. By using this �tness function I alsohave the bene�t of the abilities of the selection method. In table 5, a shortoverview of Arc-GA is given.7 ResultsThe results in table 6 were found by running the three methods (�ve if youcount the three versions of the H-GA), on 10 instances of the 25 combinations of29



Crossover operator Arc-crossover operatorMutation operator Arc-mutation operatorFitness function Arc-�tnessParent Selection method Linear ranking selectionSelection method Elitist selectionExtra NoneTable 5: Short overview of the experimental setup of Arc-GAconstraints tightness and density. On each instance, 10 di�erent runs were made.In total there were 2500 runs for each method, 100 runs for every combinationof constraint tightness and density. The large number of runs should ensurethat the values in the table are a correct representation of the performance ofthe methods.The CSP instances were CSP-problems of 15 variables, all having a domainsize of 15. Although much larger CSP problems can be created and hopefullysolved, using the three methods, this is a fairly general problem size whichcan be calculated without burdening the comparison with exceptionally longcalculation times. In order to try to �nd a solution even when trying to solvehard CSPs, I have put the maximum number of operations on 100000. Thismeans that the GA stops the search after having done 100000 operations on thepopulation.For the comparison I used two common measures. First, the percentage ofproblems solved, the success rate (SR) of the GA. If one method can still solve aCSP while the other can not, the �rst is generally considered the better one. Thesame holds for di�erent percentages, if one method solves the CSP most of thetime while another method only solves it rarely, the �rst method is consideredbetter. The second measure is the average number of evaluations to solution(AES). If one method can calculate a solution of a CSP in less evaluations thananother method it is also considered better17.Notice that in density-tightness combination (0.1, 0.1), for several methods,instead of the number of evaluations to solution, the symbol i has been placed.This is done to indicate that a solution was found in the initial population. Thenumber of evaluations to solution of these values is the size of the populationas, in my implementation, before checking if there is already a solution, allindividuals of the initial population are evaluated. Some may argue that thisprocess should be interrupted immediately after �nding a solution. This wouldhowever unbalance the results of these methods if they are compared to themethods that need a few more evaluations to �nd a solution. I believe that thisalteration in the result table removes this unbalance.Although the time used by the method is of some interest, I have not usedit in my comparison. The reason for excluding user-time from the comparisonis that there can be numerous factors that in
uence the time that is needed17if a run does not �nd a solution to the CSP, AES is unde�ned and not included into result.In such a run, no evaluations are counted for calculating AES.30



den- alg tightnesssity 0.1 0.3 0.5 0.7 0.9ESP-GA 1(i) 1(23) 1(78) 0.91(600) 0.45(13559)H-GA.1 1(11) 1(54) 1(169) 1(643) 0.72(10419)0.1 H-GA.2 1(12) 1(88) 1(315) 1(1325) 0.61(15254)H-GA.3 1(i) 1(23) 1(53) 1(484) 0.64(14752)Arc-GA 1(i) 1(32) 1(79) 0.99(211) 0.27(14131)ESP-GA 1(23) 1(132) 0.91(5699) 0.01(8366) 0()H-GA.1 1(50) 1(441) 1(4481) 0.02(69632) 0()0.3 H-GA.2 1(70) 1(704) 1(4921) 0.05(22954) 0()H-GA.3 1(26) 1(119) 0.97(3587) 0() 0()Arc-GA 1(33) 1(175) 0.91(617) 0.02(25802) 0()ESP-GA 1(36) 1(891) 0.19(4371) 0() 0()H-GA.1 1(121) 1(1671) 0.08(43337) 0() 0()0.5 H-GA.2 1(188) 1(1861) 0.07(36780) 0() 0()H-GA.3 1(47) 1(498) 0.07(21083) 0() 0()Arc-GA 1(95) 1(388) 0.01(554) 0() 0()ESP-GA 1(52) 0.91(8190) 0() 0() 0()H-GA.1 1(204) 1(5950) 0() 0() 0()0.7 H-GA.2 1(428) 1(8454) 0() 0() 0()H-GA.3 1(61) 0.95(8960) 0() 0() 0()Arc-GA 1(138) 0.71(1230) 0() 0() 0()ESP-GA 1(69) 0.42(12180) 0() 0() 0()H-GA.1 1(338) 0.37(35593) 0() 0() 0()0.9 H-GA.2 1(487) 0.4(32954) 0() 0() 0()H-GA.3 1(92) 0.13(21457) 0() 0() 0()Arc-GA 1(164) 0.04(1193) 0() 0() 0()Table 6: Success rates and the corresponding average number of evaluations tosolution (within parenthesis) for ESP-GA, Arc-GA and the three versions of H-GAto calculate a solution to a CSP, not the least of which is the speci�c computersystem that was used. A powerful computer can calculate a solution much fasterthan a slow computer. Using user-time for this comparison would probably saymore about the performance of the used computer systems then it would aboutthe used methods. Furthermore, if user-times were used, they would probablybe out-of-date in a short while as the performance of computer systems has beendramatically increased in the recent years.8 ComparisonComparisons between the three methods are made based upon the results theyhad in the earlier explained tests. These results are put down in result table6. As explained earlier, the �rst value in the result table indicates the successrate of the method while the second value (within parenthesis) indicates thecorresponding average number of evaluations to solution. I have emphasized31



the best results in the table. In cases where all three methods found a solutionin all there runs, a SR of one, I have boldfaced the value of the methods withthe least average number of solution. In cases where not all methods had aSR of one, I boldfaced the best SR separate from the best AES. This resultedin boldfacing a SR of one for one method while boldfacing the least numberof AES in another method for the same density-tightness combination. Thisseems somewhat awkward in density-density combinations (0.3,0.7), (0.5,0.5),(0.7,0.3) and (0.9,0.3) and to a lesser extend (0.1,0.7). I have done this to showthat a method that has the best SR does not necessarily has the least AES.The results from the result table do not tell the whole story about theperformance of the GA. Although SR and AES tell a lot about the performance,especially when using heuristics to help GAs to solve CSPs, there is always workdone by the GA that is not measured by these two measures. The amount ofwork that is done by the GA can be deducted by the amount of (user) time thatthe GA needs to solve the CSP. As I have already explained, I have not useduser time as a measure but I have used it to make some suppositions about thehidden work a GA does. The three versions of H-GA seem to do the least amountof hidden work comparable to the other measures while ESP-GA seems seems todo the most amount of hidden work with Arc-GA somewhere between these twoGAs.This can partly explained by examining the algorithms. H-GA was designedto include heuristics directly in the heuristic operators. This means that theheuristics are only calculated when they are needed. This introduces the leastamount of hidden work. And although Arc-GA also uses heuristics, these aremore complex than those used in H-GA. For every used heuristic a speci�c setof variables or constraints has to be calculated. Furthermore, a special tablehas to be compiled and maintained throughout the solving process. Arc-GA alsouses heuristics more often, in the crossover and mutation operator as well asin the �tness function. ESP-GA introduces the largest amount of hidden work.Although the used heuristics are not as di�cult to calculate as those used inArc-GA, ESP-GA does check every constraint and repairs it when it is violated.In CSPs that are large and complex this means that a lot of constraints have tobe evaluated, even when these constraints are not violated. In addition, ESP-GAuses and maintains the 
-table, a special table with all constraints and theircon
icts, which also adds hidden work.8.1 About ESP-GAThe results in table 6 show that ESP-GA performed best of all three GAs indensity-tightness combinations (0.1,0.1), (0.1,0.3), (0.3,0.1), (0.5,0.1), (0.9,0.1).In the �rst combination, (0.1,0.1), it shares this performance with Arc-GA andthe third version of H-GA while it shares the performance in the second com-bination with the third version of H-GA. ESP-GA also has the best performancewith regard to SR in density-tightness combinations (0.5,0.5) and (0.9,0.3) andit performs best with regard to AES in density-tightness combination (0.3,0.7).In general, I noticed that ESP-GA had a lesser performance when looking at32



SR than the �rst and second version of H-GA. This is seen clearly in density-tightness combinations (0.1,0.7), (0.1,0.9), (0.3,0.5), (0.3,0.7) and (0.7,0.3) whileESP-GA has a better success rate than one of the two �rst versions of H-GAin density-tightness combinations (0.5,0.5) and (0.9,0.3). On the other handESP-GA has a better AES in most of the density-tightness combinations exceptfor combinations (0.1,0.9) and (0.7,0.3) where the �rst version of H-GA has abetter AES and combination (0.3,0.5) where both the two �rst versions of H-GAhave a better AES.8.2 About the three versions of H-GAAccording to the results in table 6, H-GA performed best in density-tightnesscombinations (0.1,0.9) for version one and (0.1,0.1), (0.1,0.3), (0.1,0.5) and(0.3,0.3) for version three. For the combinations (0.1,0.1) and (0.1,0.3) for ver-sion three, one must note that the �rst combination has a shared best perfor-mance with ESP-GA and Arc-GA while the second combination has a shared bestperformance with ESP-GA. With regard to the performance in SR, version oneof H-GA performed best in density-tightness combinations (0.3,0.5) and (0.7,0.3)while version three performed best in combination (0.1,0.7).From the results of all three versions of H-GA, I can say that the �rst twoversions of H-GA perform slightly better than the third version. When CSPs getharder to solve, it is the third version that sometimes does not �nd a solution.It can also be said however that the third version, in general, uses the least AES.Only in density-tightness combinations (0.1,0.9) and (0.7,0.3) do the other GAs,on average, use less evaluations. In density-tightness combination (0.3,0.7), thethird version can not �nd a solution to the CSP. It must be said however, thatall other GAs �nd only a few solutions here also, this means that the failure to�nd a solution here can not be used to conclusively say that the third versionperforms the worst of all GAs.The di�erence between the �rst and the second version of H-GA is much lessobvious. The �rst version has a somewhat better SR than the second version.Only in density-tightness combinations (0.3,0.7) and (0.9,0.3) has second versionof H-GA a better SR than the �rst. It seems that the �rst version is also slightlybetter than the second version when comparing AES. Only in density-tightnesscombinations (0.3,0.7), (0.5,0.5) and (0.9,0.3) is the second version more e�cientin AES than the �rst version. One must note, again, that in these combinationsonly a few solutions where found and therefore nothing really conclusive can besaid about this di�erence.8.3 About Arc-GAFor Arc-GA, the results in table 6 show that it performed best of all three GAsin density-tightness combinations (0.1,0.1) and (0.5,0.3). Again, the best per-formance in the �rst combination is shared with ESP-GA and the third versionof H-GA. With regard to AES, Arc-GA performs best in density-tightness com-binations (0.1,0.7), (0.3,0.5), (0.5,0.5), (0.7,0.3) and (0.9,0.3).33



In general, Arc-GA does not perform as good as all other GAs. In general Ican conclude that the SR of Arc-GA drops-o� earlier and faster than the othermethods. When looking at AES however, the opposite seems to be the case.It seems that when the CSPs get harder to solve, Arc-GA remains e�cient withthe number of evaluations it uses. Throughout the results table I can say thatArc-GA is the most e�cient GA, its low SR however leads me to conclude thatArc-GA has the least performance of all three GAs.9 ConclusionThe results in the result table (table 6) give some indication of what is calledthe landscape of solvability of the di�erent GAs. This landscape of solvability isdivided into three parts. The �rst part of the landscape is where, generally, allCSPs are solved by the GAs. All CSPs which are solved with a SR of 100% by allGAs fall into this area of the landscape of solvability. Generally, all these CSPshave many solutions.The second part of the landscape of solvability is where CSPs can not besolved by the GAs. In part this is because these CSPs have no solution. In theresult table this area is indicated by a SR of 0% for all GAs.This leaves a third area of the landscape of solvability, generally called themushy region. In this area, CSPs are hard to solve and often have only one or justa few solutions. It is this area, that is important when comparing di�erent GAs.It is obvious that a GA, that can still solve these CSPs, is better than a GA thatcan not solve these CSPs. The `mushy region' in the landscapes of solvabilityof the evaluated GAs are the CSPs with density-tightness combinations (0.1,0.9),(0.3,0.7), (0.5,0.5), (0.7,0.3) and (0.9,0.3) and to a lesser extend density-tightnesscombinations (0.1,0.7) and (0.3,0.5).When looking at the mushy region of the landscape of solvability and com-paring the SRs of the GAs I can conclude that Arc-GA performs the least of allGAs. Only in density-tightness combinations (0.1,0.7) and (0.3,0.7) does Arc-GAhave a larger SR than ESP-GA although this di�erence is small. Compared tothe third version of H-GA in density-tightness combination (0.3,0.7), Arc-GA still�nds a few solutions while the third version does not.ESP-GA has a mixed performance. In density-tightness combinations (0.1,0.7),(0.1,0.9), (0.3,0.5), (0.3,0.7) and (0.7,0.3), ESP-GA does not perform as well asthe other GAs, always being out-performed by one or more GAs. In density-tightness combinations (0.5,0.5) and (0.9,0.3), the opposite is the case. In thesetwo combinations ESP-GA performs best while these two combinations are hardto solve for all GAs. In general however I can conclude that, apart from thesetwo exceptions, ESP-GA performs only slightly better than Arc-GA. I come tothis conclusion based on the fact that ESP-GA, as does Arc-GA and to a lesserextend the third version of H-GA, fails to �nd some solutions relatively early andbecause for a large part of the mushy region, ESP-GA has a lesser performancethan H-GA although it has a better SR than Arc-GA.As already said earlier, the third version of H-GA fails to �nd any solution34



in density-tightness combination (0.3,0.7) while the other GAs still �nd somesolutions. This failure to �nd solutions should not be over-stressed as the bestperforming GA in this density-tightness combination only �nds a solution in amere 5% of its runs. What I �nd more serious is that the third version ofH-GA fails to �nd some solutions in density-tightness combinations (0.3,0.5) and(0.7,0.3). Furthermore the third version of H-GA performed less when comparedto the �rst two versions of H-GA in density-tightness combinations (0.1,0.9) and(0.9,0.3). In general I conclude that the third version of H-GA is only slightlybetter or on par with ESP-GA but has a lesser performance than the �rst twoversions.The di�erence between the �rst and the second version of H-GA is small.In density-tightness combinations (0.1,0.9) and (0.5,0.5) the �rst version has aslightly better SR than the second version while in density-tightness combina-tions (0.3,0.9) and (0.9,0.3) the second version of H-GA is slightly better thanthe �rst version. When reviewing AES, the �rst version performs slightly bet-ter than the second version. Therefore I conclude that the �rst version H-GAperforms slightly better that the second version.From the di�erence between the versions of H-GA something else can beconcluded. The main di�erence between the �rst two versions and the thirdversion is that this last version uses both heuristic operators together while the�rst two versions only use one of the heuristics operators. This means thatthe heuristics of the third version of H-GA have a larger e�ect on the searchprocess, as they are used more often. The results show that this increase ofheuristics or the increase of strength of the heuristics used, did not result in abetter performance of the GA with regard to SR, although it did increase thee�ciency in which the GA found the solutions. This can be observed by thedecrease in AES. This result supports, to a certain extend, the notion that byusing stronger or more heuristics that performance of the GA is not increased. Apossible explanation for this could be that the use of stronger heuristics makethe GA more prone to premature convergence into local optima.In general, I can conclude that the �rst two versions of H-GA perform betterthan the other GAs. I come to this conclusion mostly because these two GAs stillsolve CSPs with density-tightness combinations (0.1,0.7), (0.3,0.5) and (0.7,0.3)with a SR of 100% while maintaining a high SR throughout the rest of themushy region, although other GAs, especially ESP-GA, have a better SR in somedensity-tightness combinations in the mushy region. It must also be noticed thatthe di�erences between the di�erent GAs are in general small and it is becauseof this that this comparison can not be more clear and a de�nite best GA cannot, in all fairness, be chosen.10 Future StudyIn this thesis I have compared three di�erent GAs with each other. As is gen-erally accepted in science in general and computer science especially, apart toanswering some questions about a subject, many more arise that are interesting35



to study. Because of the limits that a comparison of the three GAs imposes onthis thesis, I too have found some questions that have to remain unanswered fornow but are interesting enough to warrant further study.All three GAs still need more study, mostly where the use of di�erent heuris-tics are involved. I have chosen to use these heuristics mostly for ease of com-parison and to make sure that a comparison of these GAs is as fair as is possible.That does not mean that the heuristics that I have used are the best that canbe found for use with the respective GAs. Further study about the e�ects ofusing di�erent heuristics can result in a better understanding of the use of theseheuristics. As can be seen in the result table, results of di�erent GAs can lievery close to each other and further optimization of the use of heuristics mayprove that the performance of a speci�c GA show so much improvement thatin some instances the use of a speci�c heuristic is preferable over another. Tofurther increase of knowledge about heuristics and their speci�c use, I suggesta quantitative study of their e�ects.Although ESP-GA has performed about average, compared to the other GAs,I believe that it has a number of strong points that make further study of thisspeci�c GA, and the method used in it, interesting as I think that dramaticimprovement in its performance is possible. The best example of such a studyis the combination of ESP-GA, or more precisely the repair method that it uses,with other GAs. The method used in ESP-GA is fairly independent of the GAthat it is incorporated to. This makes that ESP-GA can be combined withany of the GAs that I have studied in this thesis or with other GAs. I believethat this, `Double Whammy'-strategy, can be very e�ective and therefore worthinvestigating. Another strong point of ESP-GA is its e�ciency in solving non-hard CSPs. An interesting question that remains to be studied, is if the e�ciencyof ESP-GA can be combined with the solving power of other GAs or methods. Oneof ESP-GA's main weaknesses is the large amount of `hidden work' it requiresto solve a CSP. An interesting suggestion from E. Marchiori, to only repair arandom subset of all constraints, may have interesting e�ects and may help toimprove the time needed to solve a CSP.An interesting notion can be detected when comparing Arc-GA and the threeversions of H-GA. It seems that the more one uses heuristics in their method,the fewer evaluations to solution are necessary. The third version of H-GA usesboth heuristic operators and has a better e�ciency than the other two versions.Arc-GA adds to the two Arc-operators, that it uses a heuristic supported �tnessfunction and performs in many cases better than version three of H-GA. I thinkthat it is interesting to study at what point an increase of stronger or moreheuristic operators in fact decrease performance of an GA, because of the limita-tion those operators lay on the diversity of the search, i.e. where does an increaseof the strength of heuristics in the methods stops being a positive in
uence onthe performance of that GA and when does it incur premature convergence.I have found that many comparisons of di�erent GAs using di�erent methodsfor solving CSPs have been made. Most introduced a new method and comparedit to one or two other methods. I believe that a study of all these methods isnow needed, if only to answer that single question: what is the reason that36



one method outperforms another? I believe that instead of trying to expandthe already broad array of di�erent heuristics and genetic operators that existin the �eld of solving CSPs (or COPs, for that matter) with one more method,more study should be devoted into comparing the existing methods to eachother quantitative. With the information gained from these comparisons a more`directed' search for better GA can then, again, be staged.

37



A Sample output of the random CSP instancegenerator5 The number ofvariables: n = 555555 The domain sizesof the variables:m = 50 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0 9>>>>=>>>>; C1;20 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0 9>>>>=>>>>; C1;30 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0 9>>>>=>>>>; C1;40 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0 9>>>>=>>>>; C1;51 0 1 0 10 1 0 0 10 1 1 0 01 0 0 0 00 0 1 1 0 9>>>>=>>>>; C2;3

0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0 9>>>>=>>>>; C2;40 0 0 0 10 1 1 0 00 1 0 1 10 1 0 0 10 0 0 0 1 9>>>>=>>>>; C2;50 1 0 0 00 1 0 0 10 1 0 1 01 1 1 0 00 1 0 0 0 9>>>>=>>>>; C3;40 0 1 0 10 1 0 0 00 1 1 1 11 0 0 1 01 1 0 1 0 9>>>>=>>>>; C3;51 0 1 1 10 1 1 0 01 0 0 0 01 1 1 1 11 1 0 1 1 9>>>>=>>>>; C4;5

38



B Graphical representation of the result table,SR and AES

0:20:30:40:5
0:60:70:80:9
1
0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:8 0:9 1

SR
tightness

Arc-GA+ + + +
+

+H-GA.1� � � � ��H-GA.2? ? ? ?
??H-GA.3e e e e eeESP-GA4 4 4 4
44

Figure 4: SR-Graph of all three methods with density 0.1

0
20000

0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:8 0:9 1
AES

tightness
Arc-GA

+ + + +
++H-GA.1

� � � �
��H-GA.2? ? ? ?
??H-GA.3e e e e
eeESP-GA4 4 4 4
44

Figure 5: AES-Graph of all three methods with density 0.1
39



00:20:4
0:60:81
0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:8 0:9 1

SR
tightness

Arc-GA+ + +
+ +

+H-GA.1� � �
� �

�H-GA.2? ? ?
? ?

?H-GA.3e e e
e e

eESP-GA4 4 4
4 4

4
Figure 6: SR-Graph of all three methods with density 0.3

020000400006000080000100000
0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:8 0:9 1

AES
tightness

Arc-GA
+ + + +

++H-GA.1
� � �

� ��H-GA.2
? ? ? ?

??H-GA.3
e e e

e eeESP-GA
4 4 4 4

44
Figure 7: AES-Graph of all three methods with density 0.3

40



00:20:4
0:60:81
0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:8 0:9 1

SR
tightness

Arc-GA+ +
+ + +

+H-GA.1� �
� � �

�H-GA.2? ?
? ? ?

?H-GA.3e e
e e e

eESP-GA4 4
4 4 4

4
Figure 8: SR-Graph of all three methods with density 0.5

020000400006000080000100000
0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:8 0:9 1

AES
tightness

Arc-GA
+ + +

+ ++H-GA.1
� � �

� ��H-GA.2
? ? ?

? ??H-GA.3
e e e

e eeESP-GA
4 4 4

4 44
Figure 9: AES-Graph of all three methods with density 0.5

41



00:20:4
0:60:81
0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:8 0:9 1

SR
tightness

Arc-GA+ +
+ + +

+H-GA.1� �
� � �

�H-GA.2? ?
? ? ?

?H-GA.3e e
e e e

eESP-GA4 4
4 4 4

4
Figure 10: SR-Graph of all three methods with density 0.7

020000400006000080000100000
0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:8 0:9 1

AES
tightness

Arc-GA
+ +

+ + ++H-GA.1
� �

� � ��H-GA.2
? ?

? ? ??H-GA.3
e e

e e eeESP-GA
4 4

4 4 44
Figure 11: AES-Graph of all three methods with density 0.7

42



00:20:4
0:60:81
0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:8 0:9 1

SR
tightness

Arc-GA+
+ + + +

+H-GA.1�
� � � �

�H-GA.2?
? ? ? ?

?H-GA.3e
e e e e

eESP-GA4
4 4 4 4

4
Figure 12: SR-Graph of all three methods with density 0.9

020000400006000080000100000
0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:8 0:9 1

AES
tightness

Arc-GA
+ +

+ + ++H-GA.1
� �

� � ��H-GA.2
? ?

? ? ??H-GA.3
e e

e e eeESP-GA
4 4

4 4 44
Figure 13: AES-Graph of all three methods with density 0.9

43



C Graphical representation of landscapes of sol-vability of all three methods, SR and AES
ESP-GA 444444 44444 44444 44444 44444 44444 44444 44444 44444 44444 00:20:40:60:81 density0 0:2 0:4 0:6 0:8 1tightness00.20.40.60.81 SR

Figure 14: SR-Graph of landscape of solvability of ESP-GA
ESP-GA 44 4 4 4 44 4 4 4 44 4 4 4 44 4 4 4 44 4 4 4 4 44444 44444 44444 44444 444440 0:2 0:4 0:6 0:8 1density 0 0:2 0:4 0:6 0:8 1tightness020000400006000080000100000AES

Figure 15: AES-Graph of landscape of solvability of ESP-GA
44



H-GA.1 ������ ����� ����� ����� ����� ����� ����� ����� ����� ����� 00:20:40:60:81 density0 0:2 0:4 0:6 0:8 1tightness00.20.40.60.81 SR
Figure 16: SR-Graph of landscape of solvability of H-GA.1

H-GA.1 �� � � � �� � � � �� � � � �� � � � �� � � � � ����� ����� ����� ����� �����0 0:2 0:4 0:6 0:8 1density 0 0:2 0:4 0:6 0:8 1tightness020000400006000080000100000AES
Figure 17: AES-graph of landscape of solvability of H-GA.1

45



H-GA.2 ?????? ????? ????? ????? ????? ????? ????? ????? ????? ????? 00:20:40:60:81 density0 0:2 0:4 0:6 0:8 1tightness00.20.40.60.81 SR
Figure 18: SR-Graph of landscape of solvability of H-GA.2

H-GA.2 ?? ? ? ? ?? ? ? ? ?? ? ? ? ?? ? ? ? ?? ? ? ? ? ????? ????? ????? ????? ?????0 0:2 0:4 0:6 0:8 1density 0 0:2 0:4 0:6 0:8 1tightness020000400006000080000100000AES
Figure 19: AES-Graph of landscape of solvability of H-GA.2

46



H-GA.3 eeeeee eeeee eeeee eeeee eeeee eeeee eeeee eeeee eeeee eeeee 00:20:40:60:81 density0 0:2 0:4 0:6 0:8 1tightness00.20.40.60.81 SR
Figure 20: SR-Graph of landscape of solvability of H-GA.3

H-GA.3 ee e e e ee e e e ee e e e ee e e e ee e e e e eeeee eeeee eeeee eeeee eeeee0 0:2 0:4 0:6 0:8 1density 0 0:2 0:4 0:6 0:8 1tightness020000400006000080000100000AES
Figure 21: AES-Graph of landscape of solvability of H-GA.3

47



Arc-GA ++++++ +++++ +++++ +++++ +++++ +++++ +++++ +++++ +++++ +++++ 00:20:40:60:81 density0 0:2 0:4 0:6 0:8 1tightness00.20.40.60.81 SR
Figure 22: SR-Graph of landscape of solvability of Arc-GA

Arc-GA ++ + + + ++ + + + ++ + + + ++ + + + ++ + + + + +++++ +++++ +++++ +++++ +++++0 0:2 0:4 0:6 0:8 1density 0 0:2 0:4 0:6 0:8 1tightness020000400006000080000100000AES
Figure 23: AES-Graph of landscape of solvability of Arc-GAReferences[1] J. Bowen and G. Dozier. Solving constraint satisfaction problems using agenetic/systematic search hybride that realizes when to quit. In Eshelman[15], pages 122{129.[2] P. Cheeseman, B. Kanefsky, and W.M. Taylor. Where the really hardproblems are. In J. Mylopoulos and R. Reiter, editors, Proceedings of the12th IJCAI-91, volume 1, pages 331{337. Morgan Kaufmann, 1991.48



[3] R. Dechter. Constraint networks. In S. Shapiro, editor, Encyclopedia ofArti�cial Intelligence. Wiley-Interscience, 1992.[4] G. Dozier, J. Bowen, and D. Bahler. Solving small and large constraintsatisfaction problems using a heuristic-based microgenetic algorithms. InIEEE [17], pages 306{311.[5] G. Dozier, J. Bowen, and D. Bahler. Solving randomly generated constraintsatisfaction problems using a micro-evolutionary hybrid that evolves a pop-ulation of hill-climbers. In Proceedings of the 2nd IEEE Conference onEvolutionary Computation, pages 614{619. IEEE Press, 1995.[6] A.E. Eiben, P.-E. Rau�e, and Zs. Ruttkay. Heuristic genetic algorithms forconstrained problems; part 1: Principles. Technical Report IR-337, VrijeUniversiteit Amsterdam, December 1993.[7] A.E. Eiben, P-E. Rau�e, and Zs. Ruttkay. Solving constraint satisfactionproblems using genetic algorithms. In IEEE [17], pages 542{547.[8] A.E. Eiben, P.-E. Rau�e, and Zs. Ruttkay. Constrained problems. InL. Chambers, editor, Practical Handbook of Genetic Algorithms, pages 307{365. CRC Press, 1995.[9] A.E. Eiben, P.-E. Rau�e, and Zs. Ruttkay. GA-easy and GA-hard constraintsatisfaction problems. In M. Meyer, editor, Proceedings of the ECAI-94Workshop on Constraint Processing, number 923 in Lecture Notes in Com-puter Science, pages 267{284. Springer-Verlag, 1995.[10] A.E. Eiben and Zs. Ruttkay. Self-adaptivity for constraint satisfaction:Learning penalty functions. In Proceedings of the 3rd IEEE Conference onEvolutionary Computation, pages 258{261. IEEE Press, 1996.[11] A.E. Eiben and Zs. Ruttkay. Constraint satisfaction problems. In Th.B�ack, D. Fogel, and Z. Michalewicz, editors, Handbook of Evolutionary Al-gorithms, pages C5.7:1{C5.7:8. IOP Publishing Ltd. and Oxford UniversityPress, 1997.[12] A.E. Eiben and J.K. van der Hauw. Adaptive penalties for evolutionarygraph-coloring. In J.-K. Hao, E. Lutton, E. Ronald, M. Schoenauer, andD. Snyers, editors, Arti�cial Evolution'97, number 1363 in LNCS, pages95{106. Springer, Berlin, 1997.[13] A.E. Eiben and J.K. van der Hauw. Solving 3-SAT with adaptive GeneticAlgorithms. In IEEE [18], pages 81{86.[14] A.E. Eiben, J.K. van der Hauw, and J.I. van Hemert. Graph coloring withadaptive evolutionary algorithms. Journal of Heuristics, 4:25{46, 1998.[15] L.J. Eshelman, editor. Proceedings of the 6th International Conference onGenetic Algorithms. Morgan Kaufmann, 1995.49



[16] E.C. Freuder. The many paths to satisfaction. In M. Meyer, editor,Constraint Processing, volume LNCS 923, pages 103{119. Springer-Verlag,1995.[17] Proceedings of the 1st IEEE Conference on Evolutionary Computation.IEEE Press, 1994.[18] Proceedings of the 4th IEEE Conference on Evolutionary Computation.IEEE Press, 1997.[19] A. K. Mackworth. Constraint satisfaction. In S. Shapiro, editor, Encyclo-pedia of Arti�cial Intelligence. Wiley-Interscience, 1992.[20] E. Marchiori. Combining constraint processing and genetic algorithms forconstraint satisfaction problems. In Th. B�ack, editor, Proceedings of the 7thInternational Conference on Genetic Algorithms, pages 330{337. MorganKaufmann, 1997.[21] Z. Michalewicz. Genetic algorithms, numerical optimization, and con-straints. In Eshelman [15], pages 151{158.[22] Z. Michalewicz. A survey of constraint handling techniques in evolution-ary computation methods. In J.R. McDonnell, R.G. Reynolds, and D.B.Fogel, editors, Proceedings of the 4th Annual Conference on EvolutionaryProgramming, pages 135{155. MIT Press, 1995.[23] Z. Michalewicz. Genetic Algorithms + Data structures = Evolution pro-grams. Springer, Berlin, 3rd edition, 1996.[24] Z. Michalewicz and M. Michalewicz. Pro-life versus pro-choice strategies inevolutionary computation techniques. In Palaniswami M., Attikiouzel Y.,Marks R.J., Fogel D., and Fukuda T., editors, Computational Intelligence:A Dynamic System Perspective, pages 137{151. IEEE Press, 1995.[25] Z. Michalewicz and M. Schoenauer. Evolutionary algorithms for con-strained parameter optimization problems. Evolutionary Computation,4(1):1{32, 1996.[26] J. Paredis. Genetic state-space search for constrained optimization prob-lems. In R. Bajcsy, editor, Proceedings of the 13th International JointConference on Arti�cial Intelligence (IJCAI 93), pages 967{972. MorganKaufmann, 1993.[27] J. Paredis. Co-evolutionary constraint satisfaction. In Y. Davidor, H.-P.Schwefel, and R. M�anner, editors, Proceedings of the 3rd Conference onParallel Problem Solving from Nature, number 866 in Lecture Notes inComputer Science, pages 46{56. Springer-Verlag, 1994.[28] J. Paredis. Co-evolutionary computation. Arti�cial Life, 2(4):355{375,1995. 50



[29] Jan Paredis. Coevolving cellular automata: Be aware of the red queen.In Thomas B�ack, editor, Proceedings of the Seventh International Confer-ence on Genetic Algorithms (ICGA97), San Francisco, CA, 1997. MorganKaufmann.[30] P. Prosser. An empirical study of phase transitions in binary constraintsatisfaction problems. Arti�cial Intelligence, 81:81{109, 1996.[31] M.C. Ri�-Rojas. Using the knowledge of the constraint network to designan evolutionary algorithm that solves CSP. In IEEE [18], pages 279{284.[32] M.C. Ri�-Rojas. Evolutionary search guided by the constraint network tosolve CSP. In IEEE [18], pages 337{348.[33] B.M. Smith. Phase transition and the mushy region in constraint satis-faction problems. In A.G. Cohn, editor, Proceedings of the 11th EuropeanConference on Arti�cial Intelligence, pages 100{104. John Wiley & SonsLtd., Aug. 1994.[34] E.P.K. Tsang. Foundations of Constraint Satisfaction. Academic PressLimited, 1993.[35] P. van Hentenryck. Constraint Satisfaction in Logic Programming. MITPress, Cambridge, MA, 1989.[36] P. van Hentenryck, V. Saraswat, and Y. Deville. Constraint processing incc(fd). In A. Podelski, editor, Constraint Programming: Basics and Trends.Springer-Verlag, 1995.[37] C.P. Williams and T. Hogg. Exploiting the deep structure of constraintproblems. Arti�cial Intelligence, 70:73{117, 1994.

51


