An Experimental Comparison of Three
Different Heuristic GAs for Solving
Constraint Satisfaction Problems

B.G.W. Craenen

November 2, 1999

Abstract

In this thesis three different techniques for solving Constraint Satisfaction Prob-
lems (CSPs) with Genetic Algorithms (GAs) are compared on a set of benchmark
problems consisting of randomly generated binary constraint satisfaction prob-
lems. The techniques that are investigated exploit heuristic information on the
constraint network to help traditional GAs solve CSPs. Implemented are three
different GAs using these techniques: ESP-GA, which uses a constraint process-
ing phase and a probabilistic repair rule by E. Marchiori; H-GA, using heuristic
genetic operators by Eiben et al.; and Arc-GA, which uses two new genetic
operators by M. C. Riff Rojas and a new fitness function that are guided by
information from the constraint network. Three different versions of H-GA were
evaluated. These three GAs are tested on benchmark problems obtained by a
random generator of binary CSP instances, which generates constraints whose
density and tightness can be specified by the user. This allows one to study
the performance of these algorithms on different kinds of CSPs. Although the
results of the different GAs lie close together, they show that two versions of H-GA
perform slightly better than the third version of H-GA and ESP-GA with Arc-GA
performing the least when comparing success rates. This seems to support the
notion that GAs using strong heuristics are prone to premature convergence while
GAs with more general heuristics are still able to escape local optima. Finally,
some options for future study are explored.

Contents
1 Introduction

2 Constraint satisfaction problems and GAs
2.1 Constraint satisfaction problems
2.2 The random CSP instance generator
2.3 Constraint Satisfaction Problems and Genetic Algorithms

3 Solving CSPs with ESP-GAs
3.1 Constraint processing e
3.2 Dependency propagationo
3.2.1 Selecting the variable
3.2.2 Selecting the value
3.2.3 Constraint order
3.3 Other considerations 0oL

4 Solving CSPs with H-GAs
4.1 Asexual heuristic operator
4.1.1 Selecting the variable
4.1.2 Selecting thevalue
4.1.3 Implementation
4.2 Multi-parent heuristic operator
4.3 Other considerations 0oL

5 Solving CSPs with Arc-GAs
5.1 The Arc-fitness function
5.2 Arc-mutation and Arc-crossover
5.3 Other considerations

6 Software description and experimental setup
6.1 Software description and experimental setup ESP-GA
6.2 Software description and experimental setup H-GA
6.3 Software description and experimental setup Arc-GA

7 Results

8 Comparison
81 AbOut ESP-GA.
8.2 About the three versionsof H-GA
83 About Arc-GA. e e e

9 Conclusion
10 Future Study

A Sample output of the random CSP instance generator

15
15
16
16
17
18
19

20
23
24
27

27
28
28
29

29

31
32
33
33

34

35

38

B Graphical representation of the result table, SR and AES 39

C Graphical representation of landscapes of solvability of all three

methods, SR and AES 44

List of Tables

1 Table of CSP - GA synonymso v v vt 8
2 Short overview of the experimental setup of the basic-GA 28
3 Short overview of the experimental setup of ESP-GA. 28
4 Short overview of the experimental setup of the three versions of

H-GA . . . e 29
5 Short overview of the experimental setup of Arc-GA. 30

6 Success rates and the corresponding average number of evalua-
tions to solution (within parenthesis) for ESP-GA, Arc-GA and the
three versions of H-GAo 31

List of Figures

1 Explanatory picture of the error evaluation set of variables. . . . 21
2 Explanatory picture of the set of crossover instantiated constraints 22
3 Explanatory picture of the set of mutation instantiated constraints 23
4 SR-Graph of all three methods with density 0.1 39
5 AES-Graph of all three methods with density 0.1 39
6 SR-Graph of all three methods with density 0.3 40
7 AES-Graph of all three methods with density 0.3 40
8 SR-Graph of all three methods with density 0.5 41
9 AES-Graph of all three methods with density 0.5 41
10 SR-Graph of all three methods with density 0.7 42
11 AES-Graph of all three methods with density 0.7 42
12 SR-Graph of all three methods with density 0.9 43
13 AES-Graph of all three methods with density 0.9 43
14 SR-Graph of landscape of solvability of ESP-GA 44
15 AES-Graph of landscape of solvability of ESP-GA 44
16 SR-Graph of landscape of solvability of H-GA.1 45
17 AES-graph of landscape of solvability of H-GA.1. 45
18 SR-Graph of landscape of solvability of H-GA.2 46
19 AES-Graph of landscape of solvability of H-GA.2 46
20 SR-Graph of landscape of solvability of H-GA.3 47
21 AES-Graph of landscape of solvability of H-GA.3 47
22 SR-Graph of landscape of solvability of Arc-GA 48
23 AES-Graph of landscape of solvability of Arc-GA 48

1 Introduction

Constraint satisfaction has become a research topic common to many different
research communities (cf. e.g. [3, 16, 19, 34]), due to its practical relevance in
many application areas like operations research, hardware design and artificial
intelligence. In particular, in the last couple of years, various techniques based
on genetic algorithms have been developed for the solution of CSPs [4, 7, 11,
23, 26, 27]. Moreover, search heuristics and constraint propagation techniques
developed in previous works on constraint processing (cf., [34, 35]) have been
incorporated into genetic operators [8, 26, 29]. Due to its stochastic nature, a
GA does not provide a complete tool for solving CSPs, and in general is not used
for detecting whether a CSP is unsatisfiable. A notable exception is a recent
proposal [1] that has introduced a hybrid algorithm that combines concepts
from genetic algorithms and hill climbing, and that incorporates arc revision in
order to decide when to stop (with failure) in case the CSP is unsatisfiable.

Usually GAs are considered to be ill-suited for solving CSPs. This is because
the traditional search operators (mutation and recombination) are considered to
be ‘blind’ to the constraints of the problem. As the traditional search operators
do not take into account the variable interdependencies that are inherent in
CSPs, applying them to an individual can result in the violation of a constraint
where this was not the case before the application. Another reason why GAs are
considered to be ill-suited to solving CSPs is the absence of an objective function
in a CSP — there is only a set of constraints to be satisfied — while traditionally
an GA is used to optimize. Despite such general arguments, in recent years, there
have been reports on quite a few GAs for solving CSPs that have a satisfactory
performance.

Roughly speaking, these GAs can be divided into two categories: those using
a fitness or penalty function that is adapted during the search [1, 4, 5, 10, 12, 13,
14, 27, 28], and those based on exploiting heuristic information on the constraint
network [7, 8, 9, 20, 31, 32]. In this thesis three methods are investigated
from the second category: the process and repair method by E. Marchiori [20],
the method using heuristic genetic operators by Eiben et al. [7], and the GA
using genetic operators and a fitness function that are guided by the constraint
network by M. C. Riff Rojas [31, 32]. Three specific GAs are implemented based
on these corresponding methods, called ESP-GA, H-GA, and Arc-GA respectively,
in this thesis. All three implementations were compared on a test suite consisting
of randomly generated binary CSPs with finite domains.

Although the three algorithms I used were firmly based on the original algo-
rithms, some adaptation were necessary. First, I had to translate the methods
that were set out in the original articles into algorithms that worked well within
the library I used. Secondly, some alterations were necessary to perform a com-
parative analysis, making the algorithms work together with the CSP instance
generator is one of them. Finally I have made some design choices regarding
the heuristics that the algorithms had to use. I have used relatively the same
heuristics where this was possible, again, this was done to perform a fair com-
parative analysis between the different GAs. Furthermore, I have tried to put

together a framework of terms and definitions early in the thesis, to bridge the
possible gap in terminology that can occur when two different fields of study
are discussed which both have similar terms for different concepts.

In order to study the relative performance of these algorithms I use a set
of benchmark problems consisting of randomly generated problem instances,
where the hardness of the problem instances is influenced by two parameters:
constraint tightness and constraint density. Detailed feedback on GA behavior is
gained by running experiments on 25 different combinations of these parameters.
While considering 10 runs on 250 problem instances, I can summarize that GAs
that use general heuristics had the best success rate of all three GAs. The first
two versions of H-GA fall in this category. GAs with strong heuristics, like Arc-GA,
seem less able to escape local optima and have a success rate that is lower than
the other GAs. ESP-GA, using a dependency propagation or repair rule, has a
performance in between these two GAs.

The thesis is organized as follows: the next section describes the notion of
constrained problems and introduces some standard definitions. It also deals
with the random CSP instance generator that I use in my experiments and the
output it produces. After that, some general notions about solving CSPs with
GAs are mentioned. In section 3 the adaptation of the method by E. Marchiori
to the random CSP instance generator and its output is explained. In section 4
the same is done with the method of Eiben et al. as is with the GA from
M. C. Riff Rojas in section 5. In section 6 the exact software description and
experimental setup of all three methods is given. The next section (section 7),
gives the results of the experiments while in section 8 these results are compared.
After that, in section 9, my conclusions are drawn, and finally, in section 10, I
discuss some possibilities for future study.

2 Constraint satisfaction problems and GAs

2.1 Constraint satisfaction problems

Constrained problems can be roughly divided into two categories: constrained
optimization problems and constraint satisfaction problems [11].

A constrained optimization problem (COP) is a triple (S, f, #), where S is a
free search space (i.e. S = D; X ...x D, is a Cartesian product of sets), f is a
(real valued) objective function on S and ¢ is a formula (Boolean function on S).
A solution of a constrained optimization problem is an s € S with ¢(s) = true
and an optimal f-value.

A constraint satisfaction problem (CSP) is a pair (S, @), where S is a free
search space and ¢ is a formula (Boolean function on S). A solution of a
constraint satisfaction problem is an s € S with ¢(s) = true.

Usually a CSP is stated as a problem of finding a set of values py,...,p, of
variables v, ..., v, within the finite domains Dq,..., D,, such that constraints
c1,...,¢, hold. I use p; to indicate the values, v; for variables, D; for the
domains over these variables, n for the total number of variables and & for the

total number of constraints. The formula ¢ is then the conjunction of the given
constraints.

One may be interested in one, some or all solutions, or only in the existence
of a solution. In this thesis I restrict the discussion to finding one solution. With
this terminology, solving a CSP means finding one feasible element of the search
space while solving a COP means finding a feasible and optimal element. Solving
COPs by GAs is extensively treated in [21, 22] and [25], the present investigation
concerns solving CSPs by GAs.

In this thesis binary constraint satisfaction problems over finite domains are
considered, this means that constraints act between pairs of variables. This is
not restrictive however since any CSP can be reduced to a binary CSP by using a
suitable transformation which involves the definition of more complex domains
(cf. [34]).

Because we look at binary constraint satisfaction problems a constraint can
be written like:

c:D; XDj —){0,1}

I adopt here the convention that c¢(p;,p;) = 1 if c(p;, p;) is false, that is if the
value pair (p;,p;) violates c. Without lose of generality one can assume that
for each constraint (i < j) holds'. Sometimes it is useful to indicate the used
constraint by its (two) variables, in that case I use the notation ¢; ;.

A constraint ¢ : D; x D; — {0,1} is relevant to variables v; and v; and is not
relevant to other variables. The cardinality with respect to a CSP of a variable
is the number of constraints relevant to that variable. Satisfied cardinality is
the number of satisfied constraints relevant to the variable while when calculat-
ing the unsatisfied cardinality , only the unsatisfied constraints relevant to the
variable are counted.

In order to extract information about the constraints of the CSP and the
relation they have to each other, I use a constraint matriz . A constraint matrix
belonging to a CSP is a R = k x n matrix whose (7, j)-th element is 1 when v;
is relevant for ¢;2:

R = 1 if variable v; is relevant for c;
“3 71 0 otherwise

It is convenient to distinguish two classes of (binary) constraints, called
functional and relational. Functional constraints are such that for every pair of
solutions (p1,p2) and (p},ph), if p1 = p} then ps = py. A constraint that is not
functional is called a relational constraint.

A conflict belonging to constraint ¢ is a value pair (p;,p;) € D; x D; (i < j)
such that ¢(p;, p;) = 1, that is, a conflict is a value pair that violates a constraint.

LTf this was not the case, one can ‘merge’ constraint ¢ : D; x D; — {0,1} and d: D; x D; —
{0, 1} into one constraint e : D; x D; — {0, 1} in such a way that e(p;,p;) = 1 & c(pi,pj) =
Lord(pj,pi) = 1.

2Because in this thesis I talk about binary CSPs, of the entries bearing on a constraint, only
two are non-zero as there are only two relevant variables to every constraint.

The set of conflicts belonging to constraint ¢ : D; x D; — {0,1} can then
be defined as:

{(pi,pj) € D; x Dj|c(p:,p;) =1}

A conflict matriz belonging to constraint ¢ : D; x D; — {0,1} is a |D;| x | D,
matrix whose (7, j)-th element is 0 iff ¢(p;, p;) = 0 and 1 iff ¢(p;,p;) = 1:

C. = 1 iff e(pi,pj) =1
bl 0 iff ¢(pi,pj) =0

An arc is a pair of variables belonging to a constraint ¢ : D; x D; — {0,1}:
(vi,vj) with (i < j)

Because an arc specifies only part of a constraint, arc-relevance and arc-
cardinality can be defined in a similar way as was earlier done with variable-
relevance and variable-cardinality®.

The constraint network can be defined as an undirected graph G = (N, E)
where N is the set of variables and E is the set of arcs that connect these
variables.

It is also useful to define instantiations. A complete instantiation is a map-
ping (vi,...,vn) = Dy X ... X D,,. A partial instantiation is a mapping from
some of the variables such that it assigns to each of the mapped variables a
value from its domain. A wviolator instantiation is an instantiation (partial or
complete) with the additional requirement that the instantiation violates at
least one constraint, in other words, its values contain a conflict with one of the
constraints.

A class of random binary CSPs can be specified by four parameters (n,m, d, t),
where n is the number of variables, m is the uniform domain size (i.e. |D;| =
m fori = 1,...,n), d is the probability that a constraint exists between two
variables (constraint density) and t is the probability of a conflict between two
values along a given constraint (constraint tightness).

CSPs exhibit a phase transition when one of these parameters is varied. At
the phase transition, problems change from being relatively easy to solve (i.e.
almost all problems have many solutions) to being very easy to prove unsolvable
(i.e. almost all problems have no solutions). The term mushy region is used to
indicate that region, where the probability that a problem is solvable, changes
from almost one to almost zero. Within this mushy region, problems are in
general difficult to solve or to prove unsolvable. An important issue in the
study of binary CSPs is to identify those problem instances which are very hard
to solve [2]. Recent theoretical investigations ([33, 37]) allow one to predict
where the hardest problem instances should occur. Williams and Hogg in [37]
develop a theory that predicts that the phase transition occurs when per variable

3Because an arc only specifies the pair of variables to a constraint, and it does not specify
which pair of variables is in conflict or not, one cannot determine if an arc, as such, is satisfied
or not. Therefore, one cannot determine the satisfied or unsatisfied cardinality of an arc
whereas that was possible with constraints.

there are a critical number of nogoods (i.e., of conflicts between that variable
and all others)*. Smith in [33] conjectures that the phase transition occurs when
problems have, on average, just one solution.

An experimental investigation with a complete algorithm (i.e., an algorithm
that finds a solution or detects unsatisfiability) based on forward checking and
on conflict-directed backjumping, is given by Prosser in [30], which provides
empirical support to the theoretical prediction given in [33, 37] for higher den-
sity /tightness of the constraint networks.

2.2 The random CSP instance generator

To generate a test suite, a CSP instance generator was used, which was devel-
oped by J.I. van Hemert, loosely based on the instance generator of G. Dozier
[1]. Given (n,m,d,t) the instance generator first calculates the number of con-
straints that will be produced using the following equation:

n(n—l)_d

Number of constraints = 5

It then starts producing constraints by randomly choosing two variables and
defining a constraint between them. When a constraint is defined between
variable v; and v;, a conflict matrix of conflicting values is generated. The
number of conflicts in this table is determined in advance by this equation:

Number of conflicts =m? - ¢

To produce a conflict, two values are chosen randomly, one for the first and one
for the second variable. When no conflict is present between the two values for
the variables, a conflict is produced.

The random CSP instance generator produces output in the following form:
The first two lines of the output indicate the number of variables (n) and the
domain size of each variable (m). In this thesis all domains have an equal size,
so in the input used in this thesis these values are the same. After a blank line,
a column of zeros and ones represents the conflict matrices between the value
pairs of the variables of the CSP.

Suppose there are n different variables, all having a domain size of m, the
first table of m x m entries defines the conflicts of the first variable (v;) with
the second variable (v2). The next m X m table defines the conflicts between
variables (v;) and (v3) etc. until all constraints that are relevant to the first
variable have been defined by their conflict matrix. After this, the constraints of
the second variable (vy) with the third variable (v3) are defined until finally all
constraints between all variables have been set. If there’s no constraint between
two variables, the array contains only zeros.

In appendix A a sample output of the CSP instance generator is given. All
remarks not in ‘type style’ are edited in later to give better understanding of the
contents of the output. Some tables of this output will be used as an ongoing

4The expected number of nogoods per variable is dtm2(n — 1).

example throughout this thesis. The sample defines a five variable CSP with
an equal domain size of five and a constraint density of 0.5 and a constraint
tightness of 0.5.

2.3 Constraint Satisfaction Problems and Genetic Algo-
rithms

In this thesis I will — and have already — use many terms that originate
from CSP-terminology. In table 1, T have put together, mostly for clarity, the
synonyms for these terms for readers who are more familiar with the classic
GA-terminology. I use the CSP-terminology mostly because I feel that it suites
best the combined fields of GAs and CSPs.

| Constraint Solving Problems | Evolutionary Algorithms |

Complete Instantiation Chromosome,
Individual

Variable Gene

Value Allele

Table 1: Table of CSP - GA synonyms

There are several ways to handle constraints in an GA. At a high conceptual
level two cases can be distinguished, depending on whether the constraints are
handled: indirectly or directly [11]. Indirect constraint handling means that the
problem of satisfying constraints is circumvented by incorporating them in the
fitness function f such that the optimality of f implies that the constraints are
satisfied. Then the optimization power of the GA can be used to find a solution.
By direct constraint handling I mean that the constraints are left as they are
and ‘something’ is done in the GA to enforce them. Some commonly used options
are repair mechanisms, decoding algorithms and using special reproduction op-
erators [11, 24].

In this thesis I pay attention to GAs that use direct handling to find a solu-
tion to CSPs. ESP-GAs use direct handling because they repair the individuals.
Repairing the individuals is done based on the propagation of the dependencies
of the variables of the CSP. To make this possible, some precalculation of the
CSP is necessary. H-GAs use new crossover or mutation methods that incorporate
heuristics to find better individuals while Arc-GAs use next to new reproduction
operators also a new fitness evaluation system, which all base their choices on a
search of the constraint network. All three methods use direct handling of the
constraints as a way to generate solutions to the CSP.

3 Solving CSPs with ESP-GAs

In [20], E. Marchiori suggests a new approach to solving CSPs by GAs. The
approach consists of two main phases in the design of the GA. In the first phase

the constraints of the CSP are rewritten and in the second phase the CSP is
solved by a GA with an embedded repair rule. In her article she names the
method ESP-GA after: Elimination, Splitting and Propagation. The method
has been tested on the five-houses puzzle and the n-queens problem were it had
satisfactory performance, even when not all steps of the method were used.

The idea is based on the ‘glass-box’ approach [36] because it adjusts the
CSP in such a way that there is only one single (type of) primitive constraint.
By decomposing more complex constraints into primitive ones, the resulting
constraints have the same granularity and therefore the same intrinsic difficulty.

This rewriting of constraints is done in two steps and is called constraint
processing. Because after the constraints are rewritten, all constraints have an
equal form, a single repair rule can be used in the GA to enforce dependency
propagation. Because all constraints share a single repair rule, repairing an
individual can be performed locally by applying the repair rule to every violating
constraint.

As said earlier, the method proposed by E. Marchiori consists of two phases:
The first phase, called constraint processing, rewrites the original CSP in two
steps: First, called the elimination step, functional constraints are eliminated
in order to reduce the number of variables in the problem. This is done analo-
gously to the operation used, e.g., in GENOCOP [23]. In the second step, called the
splitting step, the resulting constraints are decomposed into a set of constraints
in canonical form, a composition of primitive constraints. The constraints pro-
posed are of the form®:

o-v;— v Fy

Because some of the variables are discarded during the elimination of functional
constraints, these have to be recovered when the GA yields a solution. In this
way a solution of the original CSP can be calculated.

In the second phase, called dependency propagation, the adjusted CSP is
solved using a GA that incorporates a form of probabilistic repair rule. It deals
with violations of primitive constraints.® The repair rule proposed is of the
form:

if a-p; — - p; =~ then modify p; or p;

Summarizing, the following scheme of the algorithm can be obtained:
1. rewriting the CSP using constraint processing:

(a) elimination step: eliminate functional constraints
(b) splitting step: decompose the remaining constraints into constraints
in one single canonical form

2. Solving the CSP using a GA with dependency propagation in the form of a
repair rule

5other constraint forms are also possible
6because all constraints of the CSP, after constraint processing, are of the same canonical
form, only one single repair-rule is needed

3.1 Constraint processing

The implementation of constraint processing is done by converting the conflict
tables that were produced by the CSP instance generator into constraints in the
form that was proposed by E. Marchiori:

o-v;— v FEy

Converting the conflict tables into this type of constraint can be done by mul-
tiplying the value of the first variable (v;) with the domain size of the second
variable and then subtract the value of the second variable:

v = |Dj| - vi — v,

This simply means that the y-value of the proposed constraint is calculated by
taking a = D; and § = 1. To check violation of a constraint of this form one
enters the values for the specific variables. If the result is the calculated ~y-value,
the constraint is violated. A small example: suppose two variables vs and wvs
with a uniform domain size of five and with the following conflict matrix:

U3
1 01 0 1
01 0 01
Vs 01 1 00
1 0 0 0 O
0 01 10

The array can be recalculated in the explained way into the following table of
~v-values:
U3
4 3 2 1 0
9 8 7 6 5
Uy 14 13 12 11 10
19 18 17 16 15
24 23 22 21 20

Because I am only interested in the conflicts, only the y-values which had a
conflict (the non-zero entries in the conflict matrix) have to be stored. When
replacing the non-conflict entries of the earlier table with ‘—’-labels, the follow-
ing matrix of «-values is obtained:

U3
4 2 — 0
- 8 — — 5
vy - 13 12 — -
19 - — — -
- - 22 21 -

10

The resulting constraints in the form as proposed by E. Marchiori are given
below:

5-v9 —w3 #0 5-v9 —w3 #12
5-vp —v3 # 2 5-v9 —v3 #13
5-v9g —v3 #4 5-v9 —v3 #19
5-v9 —w3 #5 5-v9 —wg # 21
5-v9 —v3 #8 5-vy —v3 # 22

I prove that the above transformation produces an equivalent CSP’ from the
original CSP 7. First, notice that for every constraint ¢; ; in CSP and for every
(pr, ps) which violates ¢; ; the constraint

c;,jE|D|-vi—vj7é|D|-pT—ps

is in CSP’. Thus (pr,ps) violates c; ;. So we have shown that if CSP is vio-
lated, CSP’ is also violated. Vice-versa, suppose c;, ; in CSP’ is violated by the
assignment (p/.,p.). Then
|D| 'p; _p,s = |D| *DPr = Ds;
|D|- (b} — pr) = P, — ps-

But, by the way I defined D, we have D = {1,2,---,|D|}. Thus if p.. # p, then
|pl. — ps| > |D| which is impossible, so pl. = p, and p’, = ps, so (pl, pl) violates
CSP’.

The technique, as explained above, can be used with every domain size and
is also useful for CSPs with non-uniform domain sizes .

It is interesting to note that, with the technique as explained above, it is
not necessary to apply the elimination and splitting step as was proposed by
E. Marchiori. This is mostly due to the random CSP instance generator and the
already simplified format of its output. If more traditional CSPs were involved,
like the n-queens problem and the five-houses puzzle that were used by E. Mar-
chiori, the two steps of constraints processing is useful. The question remains
however if rewriting these problems into the format that the CSP instance gen-
erator uses as output — after which a computer can apply the above mentioned
technique to rewrite the constraints — is not more efficient than using the two
constraint processing steps that must be done by hand.

Another interesting note is that all conflicts in the binary CSP are translated
into one constraint each. This means that for a CSP with a large number of
conflicts — problems with high constraint tightness and/or density — a large
number of constraints have to be satisfied. The type of constraint however
requires a low execution time to check and introduces only linear overhead to
the original problem. The question remains however if the total overhead of an

7i.e., if a complete assignment of values satisfies CSP’, then it also satisfies the original CSP,

and vice-versa

11

actual GA trying to solve a CSP with high constraint tightness and/or density does
not slow the solving process down too much. The translation method proposed
however uses just a little storage-space as only the -values of the conflicts
(constraints) have to be stored and only simple calculation-steps are necessary
to check these constraints. This should ensure an acceptable execution-time.

3.2 Dependency propagation

When all the constraints are converted into the chosen form, the repair rule
for the implementation of dependency propagation in the GA, can be chosen. E.
Marchiori proposes the following repair rule:

if a-p; — - p; =~ then modify p; or p;

In [20], the repair rule is tested as quite effective when the choice of the variable
to be changed was done randomly, I however propose a variation on this by
using a simple and straightforward bias system to determine which of the two
values (p; or p;) should be modified. In general there are three issues to the
repair rule that should be addressed.

3.2.1 Selecting the variable

The first issue is, selecting the variable that should be repaired. This issue can
be resolved by looking at the conflict matrix. The variable with the smallest
number of zeros on its row or column is the most restricted, simply because there
are more values that result in a conflict if there are just a few zeros compared
to a value that has many zeros on its row or column. Counting the zeros in the
conflict matrix for every value of the two variables is enough to determine which
one of the variables is to be changed. With an equal number of zeros, a random
choice is made. By changing the most restricted variable I hope to improve
individuals with variables that are hard to satisfy, early on in the process. By
repairing the most restricted variable I also hope to find solutions even when
the problem has a high constraint tightness and/or density.

3.2.2 Selecting the value

The second issue is selecting the value that the variable should be changed to.
Because I know the number of feasible values that the variable has, I can make
a random selection among these values. By making a random selection at this
point, I hope, in some way, to counter the greedy selection of the variable.
Note that, although the choice is random, I make sure that only a value that
introduces no new conflict can be chosen, thus ensuring that a conflict before
the repair rule was applied to the individual is not replaced by another one,
furthermore, the old value of the selected variable can not be chosen as this
value is not feasible. It does not mean that the repair rule can not introduce
new conflict, as the newly selected value of the variable can violate another
constraint.

12

I will give an explanation using a small example. Let us look again at the
conflict matrix showing a constraint between variable vs and vs:

v3
1lo]1 0 1
0|10 0 1
Vo 0/1]1 0 0
1[0]0 0 O
0/ol1 1 0

If vy has value 3 and vs has value 2 (v = 3 and vs = 2), a conflict occurs (in
boldface). The repair rule now counts the number of zeros on row number 3
(number of non-conflicts of v3) and on the column number 2 (number of non-
conflicts of v3) and repairs the variable with the smallest number of zeros this
way the most restricted variable will be repaired. The new value of the variable
is selected by taking a random choice among the feasible values of the variable.
Feasible values are represented in the matrix by zeros, meaning non-conflict,
therefore selecting a random zero-entry on the row or column that represents
the variable is enough to find a value. In the example, both vy and v3 have 3
zeros in their row and column, a variable is therefore selected randomly. Then a
random number between 1 and 3 is taken. Suppose that variable vs is chosen and
the random number is 2. The value of vy after the repair rule for this constraint
would be 4, vs would stay unchanged. Then the next violating constraint in the
individual would be repaired.

3.2.3 Constraint order

Another concern about the repair rule is in what order the different constraints
will be repaired, constraint order. For instance, suppose I have a number of
constraints that restrict the search space severely. If those constraints will be
repaired early in the repair process, there is a high probability that the repair
would be undone later in the repair process. The other way round is also
possible. If the most restricting constraints would be repaired late in the repair
process, they could restrict the search so severely early on, so that a solution
will never be found, premature convergence. I propose a — total random —
strategy which should insure that neither possibility can occur. The easiest
way to do this is to take a random permutation of all constraints every time an
individual is repaired. In this way each individual is repaired with a different
random constraint order and therefore population diversity should be secured,
negating both earlier stated problems.

3.3 Other considerations

The two sections above cover the two main issues about ESP-GAs. Other topics
involved when using a GA will be discussed below. They involve the choices
made on representation, crossover, mutation, selection and fitness.

13

The representation chosen is a set of integers. There will be n integers, each
representing a different variable of the binary CSP. When a solution is found,
the values of all integers break none of the constraints that were made by the
constraint processing technique discussed earlier.

I have chosen the traditional one-point crossover for the crossover operator
for ESP-GA. Although, in general, this crossover is considered to limit the search
of the search space, I consider this positive because it limits the effect that the
crossover operator has on the search process while it enhances the visibility of
the effect of the repair rule. I have not examined what the effect on the results
of ESP-GA is of having another crossover operator (like the uniform random
crossover operator), on the results of ESP-GA.

I have used the mutation operator where the value of one variable is changed
randomly per selected individual. Both variable and individual selection is done
randomly. This mutation operator is chosen mainly to remain close to the
original ESP-GA.

I have programmed ESP-GA as a pure steady state GA. This means that two
selection methods can be distinguished, one selection method for selecting the
parents of the genetic operators and one for selecting the content of the next
generation. I have chosen the selection method for the parents of the genetic
operators based on a linear ranking scheme while I chose the best individuals of
the previous population, including the children of the genetic operators, as the
selection method for the next generation. Although E. Marchiori has chosen
roulette wheel selection for the original ESP-GA, I have not done so because I
hope that by choosing these selection methods I hope to eliminate some of the
random ‘noise’ that the original selection method introduces.

The fitness function I have chosen is the number of variables that violate a
constraint. The fitness mazimum is therefore n when all variables violate one or
more constraints and a solution is found with a fitness value of zero, indicating
that no constraints are violated. It is therefore obvious that a minimum has to
be found. I suggest however, that — in later studies — the effect of using a dif-
ferent fitness-function is examined, namely the number of violated constraints.
Although this fitness function gives the GA a much better insight in how far (off)
it is in solving the CSP, I have not used it now because of the large number
of constraints it has to check every time it is calculated when trying to solve
problems with a high tightness and density. Although the worst case complexity
of the first fitness function is the same as with the second fitness function, the
probability that the first fitness function has to check all constraints seems to
be smaller. Note however that, the further in the search, more and more con-
straints will be satisfied (as the GA comes closer to the solutions) and therefore
the first fitness function will more and more revert to the worse case scenario.
When a solution is found, all constraints have to be checked and the two fitness
functions have the same complexity.

14

4 Solving CSPs with H-GAs

In [7], Eiben et al. investigate the possibility of using heuristics with GAs.
Heuristics are commonly used in CSPs and are already available for most classical
CSPs. Therefore, using them would be a natural solution to help solve CSPs when
using GAs. In [7], two heuristic operators are specified: an asexual operator and
a multi-parent operator. Both are used to maintain the constraints in CSPs and
have been tested on two examples: n-queens and the graph 4-coloring problem.
In this thesis I will call the GAs as suggested by Eiben et al. heuristic GAs: H-GAs.

The basic idea in [7] is to combine the essential probabilistic mechanisms
in classical GAs with common heuristics used in traditional CSP solving meth-
ods. In H-GAs this is done by replacing the classical uniform random mechanism
of the crossover and mutation operator by a crossover or mutation mechanism
based on heuristics that take into account the prescribed constraints. The uni-
form random part of the GA and the new heuristic-based components are used
to counterbalance each others deficiencies. The application of heuristics can
improve the performance of the blind random mechanism while the random
component can compensate the strong bias that is introduced by the heuristics.

As stated earlier, the use of traditional genetic operators have a negative
effect on solving CSPs with GAs. Because they traditionally use randomness to
alter individuals, they are blind to the constraints of the CSPs. This can result in
altering an individual that satisfies some constraints in one population into an
individual that violates those constraints. Instead of repairing an individual, as
is done in ESP-GAs, in [7], Eiben et al. propose to change the genetic operators in
a way that they maintain the constraints that an individual satisfies and change
the variables that do not. This is done by two new genetic operators which
include heuristics: an asexual operator that only changes one single individual
and a multi-parent operator that introduces an individual based on two or more
parents.

4.1 Asexual heuristic operator

The asezual heuristic operator selects a number of variables in a given individual,
then selects new values for these variables. The amount of variables to be
modified, the criteria for selecting these variable and the criteria for the new
values of these variables are the defining parameters of the possible asexual
operators. Different asexual operators can be denoted by the triple (n,p,g)
where n indicates the number of variables to be modified — being either 1,2
or # (with # meaning that the number of variables to be altered is chosen
randomly but is at most one-fourth of all variables in the individual) — and p
and g indicate the selection criteria for variable and value selection respectively,
denoted by an r for random selection and a b for a heuristic biased selection. In
the H-GAs I study in this thesis, I will study an asexual operator that has the
following defining parameters: (#,b,b), meaning that each time the operator
is used, up to one fourth of the variables will be changed, its variables to be
changed and the values they will be changed to are chosen using a heuristic.

15

4.1.1 Selecting the variable

In [6] some measures or heuristics for variable selection are mentioned:

1. number of constraints that are relevant to a specific variable, the cardi-
nality of that variable;

2. number of unsatisfied constraints that are relevant to a specific variable,
the unsatisfied cardinality of that variable®;

3. average or minimum tightness of the constraints that are relevant to a
specific variable;

4. number of possible values that a specific variable has;’

5. number of possible values that a specific variable has by arc to other
variables; the number of arc-consistent values.

In [7], Eiben et al. choose to implement option 2, the asexual heuristic operator
with a heuristic bias system that changes the variable that has the largest num-
ber of unsatisfied constraints that are relevant to the variable. It is expected
that by changing this variable the largest improvement to the individual can be
made.

4.1.2 Selecting the value

Also in [6] some measures or heuristics for value selection are mentioned:

1. the number of satisfied constraints that are relevant to the variable per
value, the satisfied cardinality of the variable per value;

2. total number of possibilities for satisfying all relevant constraints;
3. the number of possibilities for satisfying the tightest constraint.

In [7], Eiben et al. choose to implement option 1, the value selection for the
asexual heuristic operator with the measure that counts the number of satisfied
constraints that are relevant to the variable, calculated per different value in
the domain. It is expected that by using this measure on value selection, the
possibility of introducing a (new) conflict in the individual is the smallest!°.

8This heuristic needs an instantiation to check if a constraint is satisfied or not.

9This heuristic is used for CSPs with a non-uniform domain size as otherwise it would simply
be | D;|.

10Note that this heuristic has to be calculated for every possible value the variable can have,
thus m times

16

4.1.3 Implementation

There are three issues to the implementation of the asexual heuristic operator:

First issue is selecting the number of variables that will be chosen to be
altered. This is implemented by taking a random number between one and
[n/4] every time the asexual heuristic operator is used. Variable selection is
repeated that many times.

The second issue is the implementation of variable selection in such a way
that it works best with the output generated by the CSP instance generator. I
have found that the easiest way to do this is by calculating a constraint ma-
trix. With the constraint matrix it is possible to find simply and quickly all
constraints relevant to a variable. The heuristic has to check for every variable
in the individual how many of the relevant constraints to the variable are cur-
rently satisfied by the values of the variables in the individual. This is done
by checking for every relevant constraint, if, for the variables of the constraint,
the values of the individual result in a conflict. This is done by checking if the
conflict matrix of the constraint has a non-zero value on the entry specified by
the values of the variables. The variable with the most unsatisfied constraints
found in this way, is chosen to be changed.

An example may explain more clearly how this measure works and how I
have implemented it. As said earlier, the easiest way to find the set of relevant
constraints to a variable is by looking in the constraint matrix. Using the
ongoing example and the output as it is given in appendix A, the following
constraint matrix can be calculated:

Vi V2 U3 V4 Us
C2,3 0 1 1 0 0
C2,5 0 1 0 0 1
C3.4 0 0 1 1 0
C3.5 0 0 1 0 1
Ca,5 0 0 0 1 1

For individual (pi,p2,ps3,p4,p5) = (1,2,3,4,5), in the conflict matrix of ¢34
and c4,5 on entries (3,4) and (4,5) a non-zero entry was found (C34 = 1 and
Css = 1). All other constraints have a zero-entry in the conflict matrix for
their respective variables (c2.3(2,3) =1, ¢2,5(2,5) = 1 and ¢35(3,5) = 1). This
means that only c3 4 and c45 are unsatisfied. Knowing this, it is clear that v;
and v, have no unsatisfied relevant constraints, v3 and vs have one unsatisfied
relevant constraint while v4 has two unsatisfied relevant constraints. Therefore
the measure will select v4 as candidate for a change of its value.

The third and final issue is the implementation of the value selection measure
so that it works best with the output generated by the CSP instance generator.
The value selection heuristic counts for every constraint relevant to the variable
and the whole domain minus its current value, how many of relevant constraints
are satisfied. Using the constraint matrix again is a simple way to calculate this
heuristic.

Using the ongoing example, the number of satisfied relevant constraints of

17

vy, that was selected with the previous measure, will be calculated. From the
constraint matrix it is clear that constraints c3 4 and ¢4 5 are relevant to variable
four. The conflict matrix of these combinations of variables are:

V4
0O 1 0 0 O
0O 1 0 0 1
VU3 01 0 1 O
1 1 1 00
0 1 0 O0 O
and
Vs
1 01 1 1
01 1 0 O
N 1 0 0 0 O
1 1 1 1 1
11 0 1 1

Again for individual (py, p2, p3, pa,ps) = (1,2,3,4,5) it is now clear that I have
to count the number of conflicts of variable v, that it has with variables three
and five. The row to be checked with constraint cs 4+ and the column to be
checked with constraint c45 are boldfaced. As the value of 3 for v, has no
conflicts with either of the other variables, it will be the new value for vs. All
other values have at least one conflict with one of the constraints''.

4.2 Multi-parent heuristic operator

The multi-parent heuristic operator of H-GAs is a multi-parent operator that
uses a heuristic to determine which value of its parents is selected for its child.
The basic mechanism of multi-parent operators is scanning [9]. This means
that the operator examines all variables of the parents consecutively and per
variable chooses one of them for the child. By using special marker update
mechanisms, e.g. shifting the markers to the first value that does not yet occur
in the child, the scanning technique can be adjusted to special types of problems
like permutation based problems, such as routing or scheduling. Scanning can
also be enriched by problem dependent heuristics relying on extra information,
e.g. edge length for routing problems. There are several ways to choose between
the parent variables!?:

e uniform random; choosing the value at random, no heuristic is used;
e occurrence base; the value that occurs the most is represented in the child);

e biased on the fitness of the parent;

11Value 4 of variable vs is not boldfaced and is not checked. This to ensure that a new
value for the variable will be chosen.

12Note that some of the basic choices that were also present in value selection are also present
here: a random strategy, and using problem independent or problem dependent heuristics

18

e using a problem dependent heuristic.

The implementation of the multi-parent heuristic operator is done in a way
that any number of parents, from two up, can be used. For the value selection
method I will use a problem dependent heuristic. Earlier I've given alternatives
for value selection and the same one I have used with the asexual heuristic
operator I will use here as well: the number of satisfied constraints that are
relevant to the variable. The difference with the asexual heuristic operator is
that the heuristic will not evaluate all possible values but only the values that
are represented by the parents. Note that Eiben et al. uses the same heuristic
in the original H-GA in [7]. An example of the value selection heuristic is already
given earlier, I will not repeat it here.

4.3 Other considerations

The representation used for the individuals in this version of the H-GA is a string
of integers each representing a different variable. A solution is therefore a in-
dividual which values violate none of the constraints. This representation of
an individual is identical to that of ESP-GA. The difference between H-GAs and
traditional GAs is of course the use of the two new heuristic operators that re-
place the original crossover operator and/or the mutation operator. If only one
of the original operators is replaced however, the other still remains. The orig-
inal crossover operator is the traditional one-point crossover while the original
mutation operator changes a random variable to a random value in its domain.
Fitness evaluation is done by counting the number of variables that violate any
of their relevant constraints. The same remark as was made with regard to
the fitness function in ESP-GAs can be made here also: counting the number of
violated constraints might give the GA a better insight in how far (off) it is to a
solution. Again I have not done so now because of the time-consuming nature
of the fitness function. As was done in the ESP-GA I have used a linear ranking
scheme as the selection-method.

The heuristics used in the two heuristic operators can be quite expensive
to use. This can be changed in a positive way by precalculating the conflict
matrices so that looking up a single bit in five different arrays can be exchanged
for looking up a single byte in a single array and then using bitshifts to gain
the specific bit. This means doing a lot of work (mostly bitshifts to compress
the conflict matrix) at the start of the solving process but doing significantly
less calculation during the solving process, while at the same time, reducing the
amount, of storage needed. I have not used this method mostly for simplicity
reasons, thereby sacrificing mainly processortime. It may be interesting however
to study the improvement on the calculating time in applications where this issue
is more important.

19

5 Solving CSPs with Arc-GAs

In [31, 32] M.C. Riff-Rojas describes her alteration of the classic GA for solving
CSPs. Noting that until now little development in the field of solving CSPs with
GAs using the constraint network was done, she describes a GA that solves CSPs
by altering the fitness function [31] and the genetic crossover and mutation oper-
ators [32]. The fitness function, called arc-fitness function, was altered in such a
way that individuals, whose values have more arcs that satisfy their constraints,
have a preference over other individuals. To find the sets of arcs to be examined,
the arc-fitness function uses information derived from the constraint network.
The genetic operators, called the arc-crossover operator and the arc-mutation
operator, also use information about the constraint network to generate offspring
that has the best combination of the values of the parent variables. This is done
by defining two partial fitness functions for both operators.

The basic idea of the arc-fitness function is to give preference to individuals
that have more arcs in the constraint network which do not violate their con-
straint. This is done by evaluating all constraints in the CSP. Every constraint
is checked if the values of the individuals satisfy it or not. If the constraint
is satisfied, the so called error evaluation of the constraint is zero. If not, the
number of relevant variables'® and the variables that are connected by arc to
these variables, are counted.

The set of these variables I call the error evaluation set of variables of the
constraint and it is found by examining the constraint network. The number of
variables in this set is independent of the individual, it is however dependent on
the instantiation of the individual if the set is calculated over a partial instanti-
ation, as constraints whose variables are not instantiated — or not completely
instantiated — are not taken into account. The cardinality of the error evalua-
tion set, or the number of variables in the set, is called the error evaluation of
the constraint. The sum of the error evaluations of all violated constraints —
the cardinality of the error evaluation sets of all constraints — is the arc-fitness
value of the individual.

A picture is useful when explaining which variables are added to the error
evaluation set of variables. In picture 1 nodes that are filled-in are instantiated
variables while nodes that are not filled-in are not instantiated. Suppose I am
calculating the error evaluation set of variables of constraint Cy, we can see that
its variables v; and vs are connected with variables vs, vy, vs, vg and vy. If one
of the two, or both of the variables will change, constraints Cs, C3, Cy4, C5 and
Cg, may become unsatisfied, while they could be satisfied now. The resulting
error evaluation set of variables is: {vs, v4,vs,vs,v7} 4.

If the error evaluation set of variables was calculated over a partial instantia-
tion, as can happen in the arc-crossover operator, the resulting error evaluation
set of variables would be: {vs, vs,v7}, as only the related variables of completely

13in a binary CSP there are two relevant variables to every constraint

14When calculating the error-evaluation set of variables for fitness evaluation, all variables
are instantiated. The instantiation in figure 1 is added for use with error-evaluation over a
partial instantiation.

20

instantiated constraints are counted.

@ _ o
3 &
\

O cs “ @

v4 v5

Figure 1: Explanatory picture of the error evaluation set of variables.

The basic idea of the arc-crossover operator is to generate a new child from
two randomly selected parents. The child inherits the best combination by arc
of the parent’s values. The arc-crossover operator makes an iterative procedure
over the constraints by arc. The constraints are ordered based on the error-
evaluation of the constraint, thereby making sure that the first arc to analyze is
the heuristically hardest constraint to satisfy in the constraint network because
it has the highest value in the error evaluation function.

The basic idea of the mutation operator is to generate a new individual by
altering a randomly chosen variable in the individual to a new value. This value
is selected by calculating for every constraint — that is relevant to the variable
selected — its error evaluation value for every possible value that the selected
variable can have.

As stated earlier, the arc-fitness function, the arc-crossover operator and
the arc-mutation operator all have their own (partial) fitness functions. The
fitness function is already explained earlier which leaves the (partial) crossover
fitness function and the (partial) mutation fitness function. Both have sets of
constraints, that the fitness functions are calculated over. Both sets of con-
straints as the corresponding fitness functions will be discussed below, all are
also defined mathematically by M. Riff-Rojas in [32].

The set of constraints needed for the partial arc-crossover fitness function,
called the set of crossover instantiated constraints, is assembled started by a
constraint and then checked to see if all relevant variables are instantiated.
If this is the case, add the constraint to the set. Then every constraint that
shares a variable with this constraint is also checked to see if its variables are
all instantiated. If this is the case, the constraint is also added to the set!®.
In short, one could say that the set of crossover instantiated constraints are all
relevant instantiated constraints to the two variables of the starting constraint.

Again, a picture may explain the set of crossover instantiated constraints
better. I have copied the picture that I used for explaining the error evalu-
ation set of constraints in picture 2, because the set of crossover instantiated

15The set is assembled with a constraint as its start because the arc-crossover operator uses
a iterative procedure by constraint.

21

constraints also starts with a constraint. With the set of crossover instantiated
constraints, there is always an instantiation. Again, filled-in nodes are instanti-
ated while those that are not, are also not instantiated. Only constraints that
have all variables instantiated are added to the set. Suppose I want to calculate
the set of crossover instantiated constraints of constraint C;, we find the set:
{Cla 027 047 CG}

o - e
\

(O cs “ @

v4 v5

Figure 2: Explanatory picture of the set of crossover instantiated constraints

The partial crossover fitness function (cff) of a specific constraint is the sum
of all error evaluation values of the constraints in the set of crossover instantiated
constraints over that constraint.

The set of constraints needed for the partial arc-mutation fitness function,
called the set of mutation instantiated constraints, is assembled started by a
variable. All relevant constraints to the variable are checked if they are instan-
tiated, and if so added to the set'®. Again, in short, one could say that the set
of mutation instantiated constraints are all relevant instantiated constraints to
the starting variable.

Again, I will use a picture to explain how the set of mutation instantiated
constraints is calculated. Picture 3 is unlike the first two pictures because the
set of mutation instantiated constraints is calculated with a variable as starting
point. Like the two earlier pictures, the instantiated variables are pictured like
filled-in nodes while uninstantiated variables are pictured like nodes that are not
filled-in. Suppose I want to calculate the set of mutation instantiated constraints
of variable v, then only the completely instantiated constraints C;, Cy and Cjy
are added to the set. The resulting set of mutation instantiated constraints is
then: {Cl, Cg, 04}

The partial mutation fitness function (mff) of a specific variable is the sum of
all error evaluation values of the constraints in the set of mutation instantiated
constraints over the given variable.

It is important to note that different values for the variables in both the arc-
fitness function, the partial crossover fitness function and the partial mutation
fitness function produce different error evaluation function values because they
change the number of variables in the error evaluation set of constraints since

16Here the set is assembled with a variable as starting point because the arc-mutation
operator operates on variables

22

.\/
/\

vd V5

Figure 3: Explanatory picture of the set of mutation instantiated constraints

they can satisfy other constraints. Different instantiations result of course also
in different results for the partial fitness functions.

After these definitions the algorithm for the arc-crossover operator can be
described as follows:

First two parents are selected randomly. At first, the child to be made from
these parents has no variables instantiated. With the evaluation of the first
constraint in the ordered set of constraints, two variables will be instantiated.
Later in the process, some variables will already be instantiated, the other
variable to be instantiated will be chosen between the two parents based on the
lowest value for the partial mutation fitness function (mff) of the variables. If
none of the variables are instantiated there are three possible choices:

e the constraint is satisfied in both parents: assign the values of the con-
straint from the parent with the best fitness evaluation;

e the constraint is satisfied for one parent: assign the values of the constraint
from this parent;

e the constraint is not satisfied in both parents: assign the best combination
of values of variables from both parents based on the partial crossover
fitness function (cff).

The algorithm of the arc-mutation operator can be described by randomly
selecting a variable to mutate and then selecting the value of the variable to
be changed by applying the partial mutation fitness function to all values of
the domain except the present value. The value with the smallest value for the
partial mutation fitness function will be chosen.

5.1 The Arc-fitness function

In the implementation of the fitness function as well as the crossover and mu-
tation fitness functions, it is convenient to have a constraint matrix. With the
constraint matrix, constructing the error evaluation set of constraints is simple.
Finding the variables that are relevant to the constraint under investigation

23

is done by searching the two non-zero entries in the constraint matrix on the
row for the appropriate constraint. Finding the constraints that share a variable
with the constraint under investigation is done by finding the non-zero entries in
the columns of the two relevant variables of the constraint. The constraints that
are relevant to the thus found variables are the variables that share a variable
with the constraint under investigation. The error evaluation set of variables is
then found by adding to it all variables of the thus found constraints.

The fitness value of a constraint is found by only counting those variables in
the error evaluation set of variables that belong to a constraints whose values
in the individual under investigation violate the constraint to whose arc the
variables belong. If all constraints in the CSP are checked in this way, the
resulting error evaluation value over all these constraints is the fitness value of
the individual.

Once more I will use the ongoing example to clarify the procedure. The
constraint matrix has already been given in the section about H-GAs:

V1 V2 U3 U4 Us
C2.3 0 1 1 0 0
C25 0 1 0 0 1
C3,4 0 0 1 1 0
C3,5 0 0 1 0 1
C4.5 0 0 0 1 1

When investigating individual (p1,pa, ps3, pa,p5) = (1,2,3,4,5) it is found that
constraints c3 4 and cs5 are violated. Let’s start with constraint csz 4, its two
relevant variables are vz and vs. Constraint cz 4 shares v with constraints cs 3
and c3,5, therefore changing variable v3 in any way will have effect on these two
constraints as well. Constraint cs 4 shares v4 with constraint ¢4 5 only. To calcu-
late the set of error evaluation of constraint c3 4 is done by naming the variables
of these four constraints (cs4,ca,3,cs,5 and ca5) and is: {vs,v3,v4,v5}. The
error evaluation of constraint cg 4 is the cardinality of this set and is therefore
4. The same can be done to constraint c45. It’s ‘sharing’ constraints are c3 4,
cs,5 and cg 5 and its set of error evaluation variables is: {ve,vs, v4,vs5}, and its
error evaluation is 4. The error evaluation of the given individual is calculated
by adding all error evaluations of all unsatisfied constraints of the individual:
4+ 4 =28.

5.2 Arc-mutation and Arc-crossover

When calculating the error evaluation set of constraints and thus the error
evaluation of a constraint I use the complete instantiation while in arc-crossover
and arc-mutation, the partial instantiation is used. This can be calculated by not
including a number of variables in the constraint matrix. This is implemented
by keeping a list of variables that are instantiated. Before adding a variable to
any set (this includes the crossover and mutation sets) this list is checked. If
the variable is not on the list, it will of course not be added to the sets. The

24

same can be said about a constraint with one of its variables not in the partial
instantiation, it also will not be added to the set.

Implementing the set of crossover instantiated constraints is very similar to
calculating the error evaluation set of a constraint. Again, I begin by looking
on the row of a constraint and adding the variables of the constraint if they are
instantiated. After this I check what constraints share a variable by adding to
a list, the constraints that have a non-zero entry in the column of the first two
variables. After this I add the original constraint to the list and the crossover
instantiated constraints list is complete. The main difference between the error
evaluation set of a constraint and the crossover instantiated constraints is that
the latter is a set of constraints while the first is a set of variables. The method
of extracting the information however is nearly the same.

Calculating the partial crossover fitness value of an individual is done by
calculating the fitness value of the individual but only evaluating the constraints
in the set of crossover instantiated constraints. This means that the fitness
function as explained earlier is used only for checking the instantiated variables.

Again, let’s use an example to clarify what I have just explained. With the
partial crossover fitness function, I too need the constraint matrix:

U1 V3 U3 U4 Uy
C2,3 0 1 1 0 0
C25 0 1 0 0 1
C3.4 0 0 1 1 0
C3.5 0 0 1 0 1
Ca,5 0 0 0 1 1

The largest difference with the arc-fitness function is however, that the crossover
fitness function is calculated over a partial instantiation. In this example I use
the partial instantiation: (vs,wvs,vs). Suppose I want to calculate the partial
crossover fitness over constraint czs. Both its variables are instantiated so
the constraint is added to the set of crossover instantiated constraints. The
constraints that share variables vz with constraint c3 5 are c34 and cy 3 but
only c3 4 is completely instantiated and therefore added to the set of crossover
instantiated constraints. The constraints that share variable vy with constraint
¢35 are cp5 and cqs but this time only c45 is completely instantiated and
therefore added to the set. The set of crossover instantiated constraints is now:
(c3,5,C3,4,ca,5). The crossover fitness function is now calculated by using the
same method as with the arc-fitness function but now only calculating the error
evaluation over the constraints in the set of crossover instantiated constraints.
As this is explained earlier, I will not repeat it here.

Implementing the mutation instantiated constraints is again very similar to
calculating the crossover instantiated constraints in that it involves a set of
constraints and uses the same two basic search actions along the rows and
columns of the constraint matrix. The difference however lies in the fact that
the search does not start with a specific constraint but with a specific variable.
The search starts by checking the constraints that are relevant to the variable.

25

Then all constraints are checked to see if they are completely instantiated, by
checking if the other variable of the constraint is instantiated. All completely
instantiated constraints are added to the set.

As it was the case in the partial crossover fitness function, the partial muta-
tion fitness value of an individual is calculated by calculating the fitness value
of the individual but only evaluating the constraints in the set of mutation
instantiated constraints. Again only a partial instantiated fitness function is
used.

Here also I will use a small example to clarify the method. I will not change
the preliminaries from last example. The instantiation is still: (vs,vs,vs), the
individual is still: (1,2,3,4,5) and the constraint matrix is of course still:

V1 V2 U3 U4 Us
C2.3 0 1 1 0 0
C25 0 1 0 0 1
C3,4 0 0 1 1 0
C3,5 0 0 1 0 1
Ca,5 0 0 0 1 1

Suppose I want to calculate the partial mutation fitness value for variable three
(v3). Constraints ¢z 3, ¢34 and c3 s have this variable. Constraint ¢z 3 however
is not completely instantiated and will therefore not be included into the set
of mutation instantiated constraints. This set is now: {cs4,cs5}. The partial
mutation fitness value of variable v3 is now calculated by taking the arc-fitness
value over the individual while only checking the constraints in the set of mu-
tation instantiated constraints.

With Arc-mutation I randomly select a individual and randomly select the
variable that I want to mutate. Then I calculate the partial mutation fitness
value for every value in the domain of that variable excluding the current value.
The new value for the variable will be the value with the lowest partial mutation
fitness value.

Before Arc-crossover can be done, all constraints have to be ordered after
their error evaluation value, highest value first. Then I randomly select two
parents and start the crossover process. At first no variables are instantiated
but every time a constraint is checked, new variables will be instantiated. The
crossover process is begun by checking the first constraint in the ordering. The
first check that is made is checking how many parents are yet instantiated. If
only one parent is not instantiated yet, the child variable is chosen among the
parents by calculating the mutation fitness function of the parents and choosing
the variable with the lowest value. If both parents are not instantiated yet,
three options can occur based on how the constraint is satisfied in the parent
individuals. If the constraint is satisfied in both parents, the two variables are
chosen from the parent with the best fitness value. If the constraint is satisfied in
only one of the parent individuals, the value of the variables to be instantiated
are copied from this parent. If the constraint is not satisfied by any of the
parent, the values are combined with each other (there are now two possible

26

combinations) and they are evaluated by the crossover fitness function. Again
the combination with the lowest value is copied into the child individual.

5.3 Other considerations

M.C. Riff Rojas, altered the traditional GA in three ways. She replaced the
original fitness function by an arc-fitness function which gives preference to in-
dividuals that satisfy more arcs in the constraint network. Next to that, she
replaces both the traditional crossover and mutation operators with counter-
parts that look to the constraint network for better evaluation. One thing that
remained the same was the integer representation of the individuals. Again I
have used the same representation that was used in ESP-GA, an individual is
a string of integers that represent each a variable in the CSP. Crossover and
mutation rate will be discussed in the section about the experimental setup.

6 Software description and experimental setup

In the following three subsections, the specific software description and exper-
imental setup of all three methods is given. However, in general, some things
about the software description and experimental setup can be said.

An effort was made to incorporate the specific details of the three methods
into a GA that is well known. In this way the differences between the three
methods can be pointed out better because all other parts of the GA have well
known characteristics. The GA I have chosen was a pure steady state GA with the
classic one point crossover and total random mutation. The selection method
for the parents of the genetic operators uses linear ranking strategy while the
selection method of the next generation is to select the best individuals from
the intermediate population.

A pure steady state GA produces per generation from a number of parents
an equal number of children with the crossover operator which in turn all get
mutated by the mutation operator. These children are then added to the current
population where they compete with the rest of the population, including their
parents, to get in the next generation, elitist selection.

One point crossover takes two parents. Then it selects a single crossover
point. The first child is constructed by taking the first part up to the crossover
point from the first parent and taking the rest from the second parent. The
other child is made by reversing the process, taking the first part from the
second parent and the rest from the first parent.

The total random mutation operator produces a single child from a single
parent by randomly taking a single variable in the individual and assigning a
random value from its domain to it.

In this section I use small tables to systematically explain what parts in the
general GA are used and which parts are exchanged by parts from the different
methods. Table 2 shows the short overview for the general GA.

27

Crossover operator One-point crossover

Mutation operator Total random mutation
Fitness function Number of violated constraints
Parent Selection method | Linear ranking selection
Selection method Elitist selection

Table 2: Short overview of the experimental setup of the basic-GA

I have used the GA-library Leap for producing the three GAs. Using this
library, that was developed by J. van Hemert, meant that I only had to imple-
ment the parts of the GAs that were different from the GAs already in the library.
The library was linked with the random CSP instance generator, which was also
developed by J. van Hemert. This made checking if there was a constraint or a
conflict in the CSP fairly easy. In the GA-library, the above mentioned ‘standard’
GA was already implemented and that implementation was used.

The general setup of the experiment was to have population size of 10 and
perform per generation a single crossover operation and two mutation opera-
tions, resulting in three fitness evaluations per generation.

6.1 Software description and experimental setup ESP-GA

As was explained in section 3, ESP-GA is an adjustment of a GA because it adds
to the GA a repair algorithm that repairs all individuals just before the selection
of the next population. None of the operators or selection methods are changed
by this method therefore the table of this methods is very similar to the table
of the basic GA, it only adds an entry to the extra line. The repair algorithm
is activated just after reproduction, but before the new population is chosen.
By repairing the newly created individuals I hope that the exploration by the
genetic operators is enhanced by repairing the new individuals.

Crossover operator One-point crossover

Mutation operator Total random mutation
Fitness function Number of violated constraints
Parent Selection method | Linear ranking selection
Selection method Elitist selection

Extra Repair rule

Table 3: Short overview of the experimental setup of ESP-GA

6.2 Software description and experimental setup H-GA

In [7], Eiben et. al do not describe a GA as such, but describe two new operators,
the earlier explained heuristic asexual and heuristic multiparent operators. Not-
ing that the heuristic asexual operator can also be used as a mutation operator

28

— as it changes a single individual — I see three possibilities for a GA that I
have investigated:

1. Use the heuristic asexual operator as a replacement of the crossover oper-
ator in the traditional GA.

2. Use the heuristic multiparent operator as a replacement of the crossover
operator in the traditional GA.

3. Use the heuristic multiparent operator as a replacement of the crossover
operator and the heuristic asexual operator as a replacement of the mu-
tation operator in the traditional GA.

All three versions were implemented and compared to the other two methods.

Version 1 | Version 2 | Version 3
Crossover operator Asexual Multi Multi
heuristic | parent parent,
operator operator | operator
Mutation operator Total Total Asexual
random random heuristic
mutation | mutation | operator
Fitness function Number of violated constraints
Parent Selection method | Linear ranking selection
Selection method Elitist selection
Extra None

Table 4: Short overview of the experimental setup of the three versions of H-GA

6.3 Software description and experimental setup Arc-GA

Arc-GA is an extensive overhaul of the general GA. It changes both the crossover
and the mutation operator and uses a new fitness function to evaluate the pop-
ulation. Although in [31] a new selection method is also proposed, I have not
implemented it. I have done this for two reasons. One reason is that this method
was not used in [32], the other reason is that the new selection method was not
designed for steady state GAs. The new selection method was not mentioned in
[32] because most of the additional abilities of the this selection method where
incorporated in the fitness function in [32]. By using this fitness function I also
have the benefit of the abilities of the selection method. In table 5, a short
overview of Arc-GA is given.

7 Results

The results in table 6 were found by running the three methods (five if you
count the three versions of the H-GA), on 10 instances of the 25 combinations of

29

Crossover operator Arc-crossover operator
Mutation operator Arc-mutation operator
Fitness function Arc-fitness

Parent Selection method | Linear ranking selection
Selection method Elitist selection

Extra None

Table 5: Short overview of the experimental setup of Arc-GA

constraints tightness and density. On each instance, 10 different runs were made.
In total there were 2500 runs for each method, 100 runs for every combination
of constraint tightness and density. The large number of runs should ensure
that the values in the table are a correct representation of the performance of
the methods.

The CSP instances were CSP-problems of 15 variables, all having a domain
size of 15. Although much larger CSP problems can be created and hopefully
solved, using the three methods, this is a fairly general problem size which
can be calculated without burdening the comparison with exceptionally long
calculation times. In order to try to find a solution even when trying to solve
hard CSPs, I have put the maximum number of operations on 100000. This
means that the GA stops the search after having done 100000 operations on the
population.

For the comparison I used two common measures. First, the percentage of
problems solved, the success rate (SR) of the GA. If one method can still solve a
CSP while the other can not, the first is generally considered the better one. The
same holds for different percentages, if one method solves the CSP most of the
time while another method only solves it rarely, the first method is considered
better. The second measure is the average number of evaluations to solution
(AES). If one method can calculate a solution of a CSP in less evaluations than
another method it is also considered better!”.

Notice that in density-tightness combination (0.1, 0.1), for several methods,
instead of the number of evaluations to solution, the symbol i has been placed.
This is done to indicate that a solution was found in the initial population. The
number of evaluations to solution of these values is the size of the population
as, in my implementation, before checking if there is already a solution, all
individuals of the initial population are evaluated. Some may argue that this
process should be interrupted immediately after finding a solution. This would
however unbalance the results of these methods if they are compared to the
methods that need a few more evaluations to find a solution. I believe that this
alteration in the result table removes this unbalance.

Although the time used by the method is of some interest, I have not used
it in my comparison. The reason for excluding user-time from the comparison
is that there can be numerous factors that influence the time that is needed

17if a run does not find a solution to the CSP, AES is undefined and not included into result.
In such a run, no evaluations are counted for calculating AES.

30

den- alg tightness

sity 01 | 0.3 0.5 | 0.7 | 0.9
ESP-GA 1(4) 1(23) 1(78) 0.91(600) 0.45(13559)
H-GA.1 || 1(11) 1(54) 1(169) 1(643) 0.72(10419)

0.1 | H-GA.2 || 1(12) 1(88) 1(315) 1(1325) 0.61(15254)
H-GA.3 1(3) 1(23) 1(53) 1(484) 0.64(14752)
Arc-GA 1(4) 1(32) 1(79) 0.99(211) 0.27(14131)
ESP-GA || 1(23) 1(132) 0.91(5699) | 0.01(8366) 0()
H-GA.1 || 1(50) 1(441) 1(4481) 0.02(69632) 0()

0.3 | H-GA.2 || 1(70) 1(704) 1(4921) 0.05(22954) 0()
H-GA.3 || 1(26) 1(119) 0.97(3587) 0() 0()
Arc-GA || 1(33) 1(175) 0.91(617) | 0.02(25802) 0()
ESP-GA || 1(36) 1(891) 0.19(4371) 0() 0()
H-GA.1 || 1(121) 1(1671) 0.08(43337) 0() 0()

0.5 | H-GA.2 || 1(188) 1(1861) 0.07(36780) 0() 0()
H-GA.3 || 1(47) 1(498) 0.07(21083) 0() 0()
Arc-GA || 1(95) 1(388) 0.01(554) 0() 0()
ESP-GA || 1(52) | 0.91(8190) 0() 0() 0()
H-GA.1 || 1(204) 1(5950) 0() 0() 0()

0.7 | H-GA.2 || 1(428) 1(8454) 0() 0() 0()
H-GA.3 || 1(61) 0.95(8960) 0() 0() 0()
Arc-GA || 1(138) | 0.71(1230) 0() 0() 0()
ESP-GA || 1(69) | 0.42(12180) 0() 0() 0()
H-GA.1 || 1(338) | 0.37(35593) 0() 0() 0()

0.9 | H-GA.2 || 1(487) | 0.4(32954) 0() 0() 0()
H-GA.3 || 1(92) | 0.13(21457) 0() 0() 0()
Arc-GA || 1(164) | 0.04(1193) 0() 0() 0()

Table 6: Success rates and the corresponding average number of evaluations to
solution (within parenthesis) for ESP-GA, Arc-GA and the three versions of H-GA

to calculate a solution to a CSP, not the least of which is the specific computer
system that was used. A powerful computer can calculate a solution much faster
than a slow computer. Using user-time for this comparison would probably say
more about the performance of the used computer systems then it would about
the used methods. Furthermore, if user-times were used, they would probably
be out-of-date in a short while as the performance of computer systems has been
dramatically increased in the recent years.

8 Comparison

Comparisons between the three methods are made based upon the results they
had in the earlier explained tests. These results are put down in result table
6. As explained earlier, the first value in the result table indicates the success
rate of the method while the second value (within parenthesis) indicates the
corresponding average number of evaluations to solution. I have emphasized

31

the best results in the table. In cases where all three methods found a solution
in all there runs, a SR of one, I have boldfaced the value of the methods with
the least average number of solution. In cases where not all methods had a
SR of one, I boldfaced the best SR separate from the best AES. This resulted
in boldfacing a SR of one for one method while boldfacing the least number
of AES in another method for the same density-tightness combination. This
seems somewhat awkward in density-density combinations (0.3,0.7), (0.5,0.5),
(0.7,0.3) and (0.9,0.3) and to a lesser extend (0.1,0.7). T have done this to show
that a method that has the best SR does not necessarily has the least AES.

The results from the result table do not tell the whole story about the
performance of the GA. Although SR and AES tell a lot about the performance,
especially when using heuristics to help GAs to solve CSPs, there is always work
done by the GA that is not measured by these two measures. The amount of
work that is done by the GA can be deducted by the amount of (user) time that
the GA needs to solve the CSP. As I have already explained, I have not used
user time as a measure but I have used it to make some suppositions about the
hidden work a GA does. The three versions of H-GA seem to do the least amount
of hidden work comparable to the other measures while ESP-GA seems seems to
do the most amount of hidden work with Arc-GA somewhere between these two
GAs.

This can partly explained by examining the algorithms. H-GA was designed
to include heuristics directly in the heuristic operators. This means that the
heuristics are only calculated when they are needed. This introduces the least
amount of hidden work. And although Arc-GA also uses heuristics, these are
more complex than those used in H-GA. For every used heuristic a specific set
of variables or constraints has to be calculated. Furthermore, a special table
has to be compiled and maintained throughout the solving process. Arc-GA also
uses heuristics more often, in the crossover and mutation operator as well as
in the fitness function. ESP-GA introduces the largest amount of hidden work.
Although the used heuristics are not as difficult to calculate as those used in
Arc-GA, ESP-GA does check every constraint and repairs it when it is violated.
In CSPs that are large and complex this means that a lot of constraints have to
be evaluated, even when these constraints are not violated. In addition, ESP-GA
uses and maintains the ~-table, a special table with all constraints and their
conflicts, which also adds hidden work.

8.1 About ESP-GA

The results in table 6 show that ESP-GA performed best of all three GAs in
density-tightness combinations (0.1,0.1), (0.1,0.3), (0.3,0.1), (0.5,0.1), (0.9,0.1).
In the first combination, (0.1,0.1), it shares this performance with Arc-GA and
the third version of H-GA while it shares the performance in the second com-
bination with the third version of H-GA. ESP-GA also has the best performance
with regard to SR in density-tightness combinations (0.5,0.5) and (0.9,0.3) and
it performs best with regard to AES in density-tightness combination (0.3,0.7).

In general, I noticed that ESP-GA had a lesser performance when looking at

32

SR than the first and second version of H-GA. This is seen clearly in density-
tightness combinations (0.1,0.7), (0.1,0.9), (0.3,0.5), (0.3,0.7) and (0.7,0.3) while
ESP-GA has a better success rate than one of the two first versions of H-GA
in density-tightness combinations (0.5,0.5) and (0.9,0.3). On the other hand
ESP-GA has a better AES in most of the density-tightness combinations except
for combinations (0.1,0.9) and (0.7,0.3) where the first version of H-GA has a
better AES and combination (0.3,0.5) where both the two first versions of H-GA
have a better AES.

8.2 About the three versions of H-GA

According to the results in table 6, H-GA performed best in density-tightness
combinations (0.1,0.9) for version one and (0.1,0.1), (0.1,0.3), (0.1,0.5) and
(0.3,0.3) for version three. For the combinations (0.1,0.1) and (0.1,0.3) for ver-
sion three, one must note that the first combination has a shared best perfor-
mance with ESP-GA and Arc-GA while the second combination has a shared best
performance with ESP-GA. With regard to the performance in SR, version one
of H-GA performed best in density-tightness combinations (0.3,0.5) and (0.7,0.3)
while version three performed best in combination (0.1,0.7).

From the results of all three versions of H-GA, I can say that the first two
versions of H-GA perform slightly better than the third version. When CSPs get
harder to solve, it is the third version that sometimes does not find a solution.
It can also be said however that the third version, in general, uses the least AES.
Only in density-tightness combinations (0.1,0.9) and (0.7,0.3) do the other GAs,
on average, use less evaluations. In density-tightness combination (0.3,0.7), the
third version can not find a solution to the CSP. It must be said however, that
all other GAs find only a few solutions here also, this means that the failure to
find a solution here can not be used to conclusively say that the third version
performs the worst of all GAs.

The difference between the first and the second version of H-GA is much less
obvious. The first version has a somewhat better SR than the second version.
Only in density-tightness combinations (0.3,0.7) and (0.9,0.3) has second version
of H-GA a better SR than the first. It seems that the first version is also slightly
better than the second version when comparing AES. Only in density-tightness
combinations (0.3,0.7), (0.5,0.5) and (0.9,0.3) is the second version more efficient
in AES than the first version. One must note, again, that in these combinations
only a few solutions where found and therefore nothing really conclusive can be
said about this difference.

8.3 About Arc-GA

For Arc-GA, the results in table 6 show that it performed best of all three GAs
in density-tightness combinations (0.1,0.1) and (0.5,0.3). Again, the best per-
formance in the first combination is shared with ESP-GA and the third version
of H-GA. With regard to AES, Arc-GA performs best in density-tightness com-
binations (0.1,0.7), (0.3,0.5), (0.5,0.5), (0.7,0.3) and (0.9,0.3).

33

In general, Arc-GA does not perform as good as all other GAs. In general I
can conclude that the SR of Arc—GA drops-off earlier and faster than the other
methods. When looking at AES however, the opposite seems to be the case.
It seems that when the CSPs get harder to solve, Arc-GA remains efficient with
the number of evaluations it uses. Throughout the results table I can say that
Arc-GA is the most efficient GA, its low SR however leads me to conclude that
Arc-GA has the least performance of all three GAs.

9 Conclusion

The results in the result table (table 6) give some indication of what is called
the landscape of solvability of the different GAs. This landscape of solvability is
divided into three parts. The first part of the landscape is where, generally, all
CSPs are solved by the GAs. All CSPs which are solved with a SR of 100% by all
GAs fall into this area of the landscape of solvability. Generally, all these CSPs
have many solutions.

The second part of the landscape of solvability is where CSPs can not be
solved by the GAs. In part this is because these CSPs have no solution. In the
result table this area is indicated by a SR of 0% for all GAs.

This leaves a third area of the landscape of solvability, generally called the
mushy region. In this area, CSPs are hard to solve and often have only one or just
a few solutions. It is this area, that is important when comparing different GAs.
It is obvious that a GA, that can still solve these CSPs, is better than a GA that
can not solve these CSPs. The ‘mushy region’ in the landscapes of solvability
of the evaluated GAs are the CSPs with density-tightness combinations (0.1,0.9),
(0.3,0.7), (0.5,0.5), (0.7,0.3) and (0.9,0.3) and to a lesser extend density-tightness
combinations (0.1,0.7) and (0.3,0.5).

When looking at the mushy region of the landscape of solvability and com-
paring the SRs of the GAs I can conclude that Arc-GA performs the least of all
GAs. Only in density-tightness combinations (0.1,0.7) and (0.3,0.7) does Arc-GA
have a larger SR than ESP-GA although this difference is small. Compared to
the third version of H-GA in density-tightness combination (0.3,0.7), Arc-GA still
finds a few solutions while the third version does not.

ESP-GA has a mixed performance. In density-tightness combinations (0.1,0.7),
(0.1,0.9), (0.3,0.5), (0.3,0.7) and (0.7,0.3), ESP-GA does not perform as well as
the other GAs, always being out-performed by one or more GAs. In density-
tightness combinations (0.5,0.5) and (0.9,0.3), the opposite is the case. In these
two combinations ESP-GA performs best while these two combinations are hard
to solve for all GAs. In general however I can conclude that, apart from these
two exceptions, ESP-GA performs only slightly better than Arc-GA. T come to
this conclusion based on the fact that ESP-GA, as does Arc-GA and to a lesser
extend the third version of H-GA, fails to find some solutions relatively early and
because for a large part of the mushy region, ESP-GA has a lesser performance
than H-GA although it has a better SR than Arc-GA.

As already said earlier, the third version of H-GA fails to find any solution

34

in density-tightness combination (0.3,0.7) while the other GAs still find some
solutions. This failure to find solutions should not be over-stressed as the best
performing GA in this density-tightness combination only finds a solution in a
mere 5% of its runs. What I find more serious is that the third version of
H-GA fails to find some solutions in density-tightness combinations (0.3,0.5) and
(0.7,0.3). Furthermore the third version of H-GA performed less when compared
to the first two versions of H-GA in density-tightness combinations (0.1,0.9) and
(0.9,0.3). In general I conclude that the third version of H-GA is only slightly
better or on par with ESP-GA but has a lesser performance than the first two
versions.

The difference between the first and the second version of H-GA is small.
In density-tightness combinations (0.1,0.9) and (0.5,0.5) the first version has a
slightly better SR than the second version while in density-tightness combina-
tions (0.3,0.9) and (0.9,0.3) the second version of H-GA is slightly better than
the first version. When reviewing AES, the first version performs slightly bet-
ter than the second version. Therefore I conclude that the first version H-GA
performs slightly better that the second version.

From the difference between the versions of H-GA something else can be
concluded. The main difference between the first two versions and the third
version is that this last version uses both heuristic operators together while the
first two versions only use one of the heuristics operators. This means that
the heuristics of the third version of H-GA have a larger effect on the search
process, as they are used more often. The results show that this increase of
heuristics or the increase of strength of the heuristics used, did not result in a
better performance of the GA with regard to SR, although it did increase the
efficiency in which the GA found the solutions. This can be observed by the
decrease in AES. This result supports, to a certain extend, the notion that by
using stronger or more heuristics that performance of the GA is not increased. A
possible explanation for this could be that the use of stronger heuristics make
the GA more prone to premature convergence into local optima.

In general, I can conclude that the first two versions of H-GA perform better
than the other GAs. I come to this conclusion mostly because these two GAs still
solve CSPs with density-tightness combinations (0.1,0.7), (0.3,0.5) and (0.7,0.3)
with a SR of 100% while maintaining a high SR throughout the rest of the
mushy region, although other GAs, especially ESP-GA, have a better SR in some
density-tightness combinations in the mushy region. It must also be noticed that
the differences between the different GAs are in general small and it is because
of this that this comparison can not be more clear and a definite best GA can
not, in all fairness, be chosen.

10 Future Study

In this thesis I have compared three different GAs with each other. As is gen-
erally accepted in science in general and computer science especially, apart to
answering some questions about a subject, many more arise that are interesting

35

to study. Because of the limits that a comparison of the three GAs imposes on
this thesis, I too have found some questions that have to remain unanswered for
now but are interesting enough to warrant further study.

All three GAs still need more study, mostly where the use of different heuris-
tics are involved. I have chosen to use these heuristics mostly for ease of com-
parison and to make sure that a comparison of these GAs is as fair as is possible.
That does not mean that the heuristics that I have used are the best that can
be found for use with the respective GAs. Further study about the effects of
using different heuristics can result in a better understanding of the use of these
heuristics. As can be seen in the result table, results of different GAs can lie
very close to each other and further optimization of the use of heuristics may
prove that the performance of a specific GA show so much improvement that
in some instances the use of a specific heuristic is preferable over another. To
further increase of knowledge about heuristics and their specific use, I suggest
a quantitative study of their effects.

Although ESP-GA has performed about average, compared to the other GAs,
I believe that it has a number of strong points that make further study of this
specific GA, and the method used in it, interesting as I think that dramatic
improvement in its performance is possible. The best example of such a study
is the combination of ESP-GA, or more precisely the repair method that it uses,
with other GAs. The method used in ESP-GA is fairly independent of the GA
that it is incorporated to. This makes that ESP-GA can be combined with
any of the GAs that I have studied in this thesis or with other GAs. I believe
that this, ‘Double Whammy’-strategy, can be very effective and therefore worth
investigating. Another strong point of ESP-GA is its efficiency in solving non-
hard CSPs. An interesting question that remains to be studied, is if the efficiency
of ESP-GA can be combined with the solving power of other GAs or methods. One
of ESP-GA’s main weaknesses is the large amount of ‘hidden work’ it requires
to solve a CSP. An interesting suggestion from E. Marchiori, to only repair a
random subset of all constraints, may have interesting effects and may help to
improve the time needed to solve a CSP.

An interesting notion can be detected when comparing Arc-GA and the three
versions of H-GA. It seems that the more one uses heuristics in their method,
the fewer evaluations to solution are necessary. The third version of H-GA uses
both heuristic operators and has a better efficiency than the other two versions.
Arc-GA adds to the two Arc-operators, that it uses a heuristic supported fitness
function and performs in many cases better than version three of H-GA. I think
that it is interesting to study at what point an increase of stronger or more
heuristic operators in fact decrease performance of an GA, because of the limita-
tion those operators lay on the diversity of the search, i.e. where does an increase
of the strength of heuristics in the methods stops being a positive influence on
the performance of that GA and when does it incur premature convergence.

I have found that many comparisons of different GAs using different methods
for solving CSPs have been made. Most introduced a new method and compared
it to one or two other methods. I believe that a study of all these methods is
now needed, if only to answer that single question: what is the reason that

36

one method outperforms another? I believe that instead of trying to expand
the already broad array of different heuristics and genetic operators that exist
in the field of solving CSPs (or COPs, for that matter) with one more method,
more study should be devoted into comparing the existing methods to each
other quantitative. With the information gained from these comparisons a more
‘directed’ search for better GA can then, again, be staged.

37

A Sample output of the random CSP instance
generator

~ S 0 S S
(2] (2] [[<
Qo Qo QO QO QO
7 TN TN TN TN TN
OO oo oo OO IO A "4 40 4000 10100 OO —
OO OO OO A OODO A0 OO A =A™ — OO —
OO O OO 1O 0O OO0 00O 1010100~ +H0O O
SO OO OO " A —H O " A" "4 4O — O —O O —
OO OO OO OO0 oo oo HOo0OOo0 oo A A A O A~
w0
10 O ©
Gy N O
= S q
) =
2 < 3
L i
Q
ez T Ew
e.m o +* | N o) R 0 o)
< e — = = = o
H~” HC°E O O O O O
7 TN TN TN TN N
OO OO OO OO OO oo oo H+HOOO
O OO OO O OO OO oo o000 ooococoocooooH
OO OO OO OO OO oo o0 oo oo ooco0coHo —+HO A
% OO OO OO OO OO oo ooooco H =00
Yo}
Yo OO OO OO OO oo OO ococooooc H0o0 o 0o
Te} Te}

38

B Graphical representation of the result table,
SR and AES

16 I Y I
09+ Arc-GA - + -- —
H-GA.1 -~ % -
0.8— H-GA.2 - % --]
0.7 L H-GA.3 O _
ESP-GA —A—

SR 0.6 - _
0.5 - -
04 r " -
0.3 + -
0.2 ! ! ! ! ! ! ! !

01 02 03 04 05 06 07 08 09 1

tightness
Figure 4: SR-Graph of all three methods with density 0.1

20000
Arc-GA - - --
H-GA.1 - X --
AES H-GA.2 - & -
H-GA.3 - - O -
08 ! & [, OSSO 1 l
01 0.2 03 04 05 06 07 08 09 1

tightness
Figure 5: AES-Graph of all three methods with density 0.1

39

Arc-GA - .-
08 - H-GA.1 - X% - _
H-GA.2 - -
H-GA.3 L
0.6 - ESP-GA —A— ".'___ —
SR .
0.4 —
0.2 - —
0 ! ! ! ! ! . gy
01 02 03 04 05 06 07 08 09 1

tightness
Figure 6: SR-Graph of all three methods with density 0.3

100000 : | |
Arc-GA - -+ --
80000 ~ H-GA.1 - - X -]
H-GA.2 - % -
H-GA.3 - - O -
60000 - ESP-GA —A— |
AES
40000 |
20000 ~ |
0& ! Y | | | |
01 02 03 04 05 06 07 08 09 1

tightness
Figure 7: AES-Graph of all three methods with density 0.3

40

T T T
Arc-GA - + --
0.8 - H-GA.1 - X - _
H-GA.3 - - O -
0.6 - ESP-GA —A— —
SR
0.4 -
0.2 - ' -
0 | | | 4 . | IS | $
01 02 03 04 05 06 07 08 09 1
tightness

Figure 8: SR-Graph of all three methods with density 0.5

100000 : | | .
Arc-GA - -+ --
80000 ~ H-GA.1 - - X -]
H-GA.2 - % -
H-GA.3 - O
60000 - ESP-GA —A— |
AES
40000 |
20000 |
08 L , | | | |
01 02 03 04 05 06 07 08 09 1

tightness
Figure 9: AES-Graph of all three methods with density 0.5

41

Arc-GA - + -
0. H-GA.1 - % |
H-GA.2 - % -
H-GA.3 - - O -
0.6 ESP-GA —A— -
SR
0.4 -
0.2 -
0 ! ! ! ! & ! &
0.1 02 03 04 06 07 08 09 1
tightness
Figure 10: SR-Graph of all three methods with density 0.7
100000 & &
80000 -
60000 -
AES
40000 -
20000 -
0 --.I".".'-I»-. ! ! ! ! | !
0.1 02 03 04 05 06 07 08 09 1

42

tightness
Figure 11: AES-Graph of all three methods with density 0.7

Arc-GA - + -
0.8 H-GA.1 X - -
H-GA.2 - % -
H-GA.3 - - O -
0.6 ESP-GA —A— -
SR
0.4 -
0.2 T -
0 ! i I PR ! & ! &
0.1 02 03 04 05 06 07 08 09 1
tightness
Figure 12: SR-Graph of all three methods with density 0.9
100000 & &
80000 -
60000 -
AES
40000 -
20000 -
0 1. .+. ! ! ! ! ! !
0.1 02 03 04 05 06 07 08 09 1

43

tightness
Figure 13: AES-Graph of all three methods with density 0.9

C Graphical representation of landscapes of sol-
vability of all three methods, SR and AES

Figure 14: SR-Graph of landscape of solvability of ESP-GA

Figure 15: AES-Graph of landscape of solvability of ESP-GA

44

Figure 16: SR-Graph of landscape of solvability of H-GA. 1

Figure 17: AES-graph of landscape of solvability of H-GA. 1

45

Figure 18: SR-Graph of landscape of solvability of H-GA .2

Figure 19: AES-Graph of landscape of solvability of H-GA.2

46

Figure 20: SR-Graph of landscape of solvability of H-GA.3

Figure 21: AES-Graph of landscape of solvability of H-GA.3

47

Figure 22: SR-Graph of landscape of solvability of Arc-GA

Figure 23: AES-Graph of landscape of solvability of Arc-GA

References

[1] J. Bowen and G. Dozier. Solving constraint satisfaction problems using a
genetic/systematic search hybride that realizes when to quit. In Eshelman
[15], pages 122-129.

[2] P. Cheeseman, B. Kanefsky, and W.M. Taylor. Where the really hard
problems are. In J. Mylopoulos and R. Reiter, editors, Proceedings of the
12th IJCAI-91, volume 1, pages 331-337. Morgan Kaufmann, 1991.

48

[3]

[4]

[5]

[12]

R. Dechter. Constraint networks. In S. Shapiro, editor, Encyclopedia of
Artificial Intelligence. Wiley-Interscience, 1992.

G. Dozier, J. Bowen, and D. Bahler. Solving small and large constraint
satisfaction problems using a heuristic-based microgenetic algorithms. In
IEEE [17], pages 306-311.

G. Dozier, J. Bowen, and D. Bahler. Solving randomly generated constraint
satisfaction problems using a micro-evolutionary hybrid that evolves a pop-
ulation of hill-climbers. In Proceedings of the 2nd IEEE Conference on
Evolutionary Computation, pages 614-619. IEEE Press, 1995.

A.E. Eiben, P.-E. Raué, and Zs. Ruttkay. Heuristic genetic algorithms for
constrained problems; part 1: Principles. Technical Report IR-337, Vrije
Universiteit Amsterdam, December 1993.

A.E. Eiben, P-E. Raué, and Zs. Ruttkay. Solving constraint satisfaction
problems using genetic algorithms. In IEEE [17], pages 542-547.

A.E. Eiben, P.-E. Raué, and Zs. Ruttkay. Constrained problems. In
L. Chambers, editor, Practical Handbook of Genetic Algorithms, pages 307—
365. CRC Press, 1995.

A.E. Eiben, P.-E. Raué, and Zs. Ruttkay. GA-easy and GA-hard constraint
satisfaction problems. In M. Meyer, editor, Proceedings of the ECAI-94
Workshop on Constraint Processing, number 923 in Lecture Notes in Com-
puter Science, pages 267—284. Springer-Verlag, 1995.

A.E. Eiben and Zs. Ruttkay. Self-adaptivity for constraint satisfaction:
Learning penalty functions. In Proceedings of the 3rd IEEE Conference on
Evolutionary Computation, pages 258-261. IEEE Press, 1996.

A.E. Eiben and Zs. Ruttkay. Constraint satisfaction problems. In Th.
Bick, D. Fogel, and Z. Michalewicz, editors, Handbook of Evolutionary Al-
gorithms, pages C5.7:1-C5.7:8. IOP Publishing Ltd. and Oxford University
Press, 1997.

A.E. Eiben and J.K. van der Hauw. Adaptive penalties for evolutionary
graph-coloring. In J.-K. Hao, E. Lutton, E. Ronald, M. Schoenauer, and
D. Snyers, editors, Artificial Evolution’97, number 1363 in LNCS, pages
95-106. Springer, Berlin, 1997.

A.E. Eiben and J.K. van der Hauw. Solving 3-SAT with adaptive Genetic
Algorithms. In IEEE [18], pages 81-86.

A.E. Eiben, J.K. van der Hauw, and J.I. van Hemert. Graph coloring with
adaptive evolutionary algorithms. Journal of Heuristics, 4:25-46, 1998.

L.J. Eshelman, editor. Proceedings of the 6th International Conference on
Genetic Algorithms. Morgan Kaufmann, 1995.

49

[16]

[17]

18]

[19]

[20]

[21]

[22]

[27]

E.C. Freuder. The many paths to satisfaction. In M. Meyer, editor,
Constraint Processing, volume LNCS 923, pages 103-119. Springer-Verlag,
1995.

Proceedings of the 1st IEEE Conference on FEvolutionary Computation.
IEEE Press, 1994.

Proceedings of the 4th IEEE Conference on FEvolutionary Computation.
IEEE Press, 1997.

A. K. Mackworth. Constraint satisfaction. In S. Shapiro, editor, Encyclo-
pedia of Artificial Intelligence. Wiley-Interscience, 1992.

E. Marchiori. Combining constraint processing and genetic algorithms for
constraint satisfaction problems. In Th. Béck, editor, Proceedings of the 7th
International Conference on Genetic Algorithms, pages 330-337. Morgan
Kaufmann, 1997.

Z. Michalewicz. Genetic algorithms, numerical optimization, and con-
straints. In Eshelman [15], pages 151-158.

Z. Michalewicz. A survey of constraint handling techniques in evolution-
ary computation methods. In J.R. McDonnell, R.G. Reynolds, and D.B.
Fogel, editors, Proceedings of the 4th Annual Conference on Evolutionary
Programming, pages 135-155. MIT Press, 1995.

Z. Michalewicz. Genetic Algorithms + Data structures = Ewvolution pro-
grams. Springer, Berlin, 3rd edition, 1996.

Z. Michalewicz and M. Michalewicz. Pro-life versus pro-choice strategies in
evolutionary computation techniques. In Palaniswami M., Attikiouzel Y.,
Marks R.J., Fogel D., and Fukuda T., editors, Computational Intelligence:
A Dynamic System Perspective, pages 137-151. IEEE Press, 1995.

Z. Michalewicz and M. Schoenauer. FEvolutionary algorithms for con-
strained parameter optimization problems. FEwolutionary Computation,
4(1):1-32, 1996.

J. Paredis. Genetic state-space search for constrained optimization prob-
lems. In R. Bajcsy, editor, Proceedings of the 13th International Joint
Conference on Artificial Intelligence (IJCAI 93), pages 967-972. Morgan
Kaufmann, 1993.

J. Paredis. Co-evolutionary constraint satisfaction. In Y. Davidor, H.-P.
Schwefel, and R. Manner, editors, Proceedings of the 3rd Conference on
Parallel Problem Solving from Nature, number 866 in Lecture Notes in
Computer Science, pages 46-56. Springer-Verlag, 1994.

J. Paredis. Co-evolutionary computation. Artificial Life, 2(4):355-375,
1995.

50

[29]

[30]

[31]

[34]

[35]

Jan Paredis. Coevolving cellular automata: Be aware of the red queen.
In Thomas Béck, editor, Proceedings of the Seventh International Confer-
ence on Genetic Algorithms (ICGA97), San Francisco, CA, 1997. Morgan
Kaufmann.

P. Prosser. An empirical study of phase transitions in binary constraint
satisfaction problems. Artificial Intelligence, 81:81-109, 1996.

M.C. Riff-Rojas. Using the knowledge of the constraint network to design
an evolutionary algorithm that solves CSP. In IEEE [18], pages 279-284.

M.C. Riff-Rojas. Evolutionary search guided by the constraint network to
solve CSP. In IEEE [18], pages 337-348.

B.M. Smith. Phase transition and the mushy region in constraint satis-
faction problems. In A.G. Cohn, editor, Proceedings of the 11th European
Conference on Artificial Intelligence, pages 100-104. John Wiley & Sons
Ltd., Aug. 1994.

E.P.K. Tsang. Foundations of Constraint Satisfaction. Academic Press
Limited, 1993.

P. van Hentenryck. Constraint Satisfaction in Logic Programming. MIT
Press, Cambridge, MA, 1989.

P. van Hentenryck, V. Saraswat, and Y. Deville. Constraint processing in
cc(fd). In A. Podelski, editor, Constraint Programming: Basics and Trends.
Springer-Verlag, 1995.

C.P. Williams and T. Hogg. Exploiting the deep structure of constraint
problems. Artificial Intelligence, 70:73-117, 1994.

ol

