
2013 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 22–25, 2013, SOUTHAMPTON, UK

A NOVEL HEURISTIC MEMETIC CLUSTERING ALGORITHM

B.G.W. Craenen2,1∗ A.K. Nandi1,2† T. Ristaniemi2

1Brunel University 2University of Jyväskylä
Uxbridge, Middlesex, UK Jyväskylä, Finland

{Bart.Craenen|Asoke.Nandi}@brunel.ac.uk Tapani.Ristaniemi@jyu.fi

ABSTRACT

In this paper we introduce a novel clustering algorithm based
on the Memetic Algorithm meta-heuristic wherein clusters
are iteratively evolved using a novel single operator employ-
ing a combination of heuristics. Several heuristics are de-
scribed and employed for the three types of selections used in
the operator. The algorithm was exhaustively tested on three
benchmark problems and compared to a classical clustering
algorithm (k-Medoids) using the same performance metrics.
The results show that our clustering algorithm consistently
provides better clustering solutions with less computational
effort.

Index Terms— Clustering, Memetic Algorithms, Heuris-
tics

1. INTRODUCTION

Clustering is a data and signal processing task where the ob-
jective is to determine a finite set of categories, called clus-
ters, to describe a dataset according to the similarities among
its objects [1]. The applications of clustering are manifold
and range from market segmentation [2] and image process-
ing [3] to document categorisation and web mining [4]. More
recently clustering has gained prominence for signal process-
ing in the field of bioinformatics [5].

Clustering as an optimisation problem maximises the ho-
mogeneity within clusters while maximising the heterogene-
ity between clusters [3]. It strives to ensure that (data) ob-
jects belonging to the same cluster are more similar to each
other and more different to those belonging to other clusters.
Measuring similarity and dissimilarity is usually tackled indi-
rectly. Distance measures are used for quantifying the degree
of dissimilarity among data objects in such a way that more
similar data objects have lower dissimilarity values [6]. Sev-
eral distance measures can be deployed for clustering [3], but
here we use the Euclidean distance measure.
∗This research was supported by TEKES (Finland) grant 40334/10 Ma-

chine Learning for Future Music and Learning Technologies (MUSCLES).
†Asoke K. Nandi would like to thank TEKES for the award of the Finland

Distinguished Professorship

Clustering techniques can be broadly divided into three
main types [3]: overlapping (non-exclusive), partitional, and
hierarchical. The former two types become related in hier-
archical clustering, where a nested sequence of partial clus-
terings is both hierarchical and partitional. In this study we
consider only partitional clustering.

Clustering is deemed one of the most difficult and chal-
lenging problems in Machine Learning. This is due mostly to
its unsupervised nature. From a theoretical perspective, clus-
tering is formally considered as a particular kind of NP-hard
grouping problem [7]. This has stimulated the search for effi-
cient approximation algorithms, including not only the use of
ad hoc heuristics for particular classes or instances of prob-
lems, but also the use of general-purpose meta-heuristics [8].
Particularly Evolutionary Algorithms (EAs), and as a subset
Memetic Algorithms (MAs), are widely held to be effective
on these kinds of NP-hard problems. They are able to provide
near-optimal solutions to such problems in reasonable time.
Many clustering EAs and MAs have been proposed in litera-
ture [9].

MAs represent one of the recent growing areas of research
in Evolutionary Computation and Machine Learning. They
represent a synergy of evolutionary, individual, and local
search learning. In literature, MAs are sometimes referred
to as Baldwinian EAs, Lamarckian EAs, Cultural Algo-
rithms, or Genetic Local-Search Algorithms. MAs, however,
sometimes suffer from the algorithm-of-many-parts problem,
also called Memetic Overkill [10]. When MAs are afflicted
by Memetic Overkill it becomes difficult to identify which
parts of the algorithm contribute toward finding solutions,
even whether some parts hamper finding solutions. Memetic
Overkill is best avoided by rigorously limiting the constitut-
ing parts of the MA, adding new ones only when their effects
on the whole algorithm is shown to be beneficial.

This study presents a novel clustering algorithm based on
the MA meta-heuristics. We set out to develop an algorithm
that is both easy to understand and use, using techniques that
provide robust performance with as few parameters required
as possible. The idea behind this approach is to provide a
benchmark general-purpose algorithm that is easy to tailor
to specific problems and further research. The novel aspect

978-1-4799-1180-6/13/$31.00 c©2012 IEEE

of the algorithm is the single search operator. It uses three
types of local-search heuristics, with several options avail-
able for each. Different local-search heuristics constitute dif-
ferent variants of the algorithm, which can be used to ex-
ploit features of different problems and problem instances. In
this study we demonstrate experimentally that our algorithm
consistently outperforms the commonly used k-Medoids al-
gorithm on three benchmark datasets on shared effectiveness
and efficiency metrics. As far as the authors are aware, no
such algorithm or systematic investigation of these heuristics
within a single MA framework has been published before.

The remainder of this study is then organised as follows.
Section 2 provides a definition of the problem, and a notation
used throughout the paper. Section 3 describes the algorithm
and the heuristics used. In section 4 we shortly describe the
three benchmark datasets used. Section 5 presents our experi-
mental method ans setup, with the results presented in section
6. Finally, a conclusion is provided in section 7.

2. PROBLEM DEFINITION

In this section we will provide a formal definition of the clus-
tering problem and introduce a notation used in the rest of the
paper. Where super- or subscripts are used, we will reuse i,
j, l, m. No meaning is implied where these are carried over
between definitions. As is customary in literature, bold-faced
variables indicate sets, with |Y| defined as the number of el-
ements in set Y, i.e., its size.

A n-dimensional feature or attribute vector x = (x1, x2,
. . . , xn) is called a data object, with xi, (i = 1, 2, . . . , n)
the i-th feature, attribute, or data value. A dataset X = {x1

, x2, . . . , xN} has N = |X| data objects, with xi, (i =
1, 2, . . . , N) the i-th data object. A clustering C is a col-
lection of data object subsets ci (i = 1, 2, . . . , k), called
clusters, with k = |C| traditionally reserved to denote the
size of the clustering; the number of clusters, |c| denotes the
size of cluster c, i.e., the number of data objects in the cluster.
A cluster is not allowed to be empty: c 6= ∅ or |c| 6= 0,
and the conjunction of all clusters contains all data objects of
the dataset: c1 ∪ c2 ∪ . . . ∪ ck = X. In a non-overlapping
clustering, all clusters are mutually disjunct: ci ∩ cj = ∅,
for i 6= j. If the mutual disjunction criteria is relaxed, clus-
tering C is said to be overlapping. Here we only consider
non-overlapping clustering.

The Euclidean distance metric d(xi, xj) is used to cal-
culate the distance between two data objects xi and xj .
d(x, c) is used to indicate the set of distances between
data object x and all data objects in cluster c: d(x, c) =
{d(x, x′1), d(x, x′2), . . . , d(x, x′|c|)} with x′ ∈ c. The inner-
cluster distance of cluster c is used as the basis for the fitness
function and most of the heuristics, and is calculated as fol-

lows:

D(c) =

|c|−1∑
l=1

|c|∑
m=l+1

d(xl, xm) (1)

where xl ∈ c and xm ∈ c. If the inner-cluster distance
is calculated for a clustering C, it produces a set contain-
ing the inner-cluster distances of all clusters in the clustering:
D(C) = {D(c1), D(c2), . . . , D(ck)}. The inner-cluster dis-
tance of data object x is defined as its contribution to the
inner-cluster distance of the cluster it belong to: D(x) =∑|c|

i=1 d(x, xi) where x ∈ c and xi ∈ c. If the inner-cluster
distance of a dataset X is calculated, it produces a set con-
taining the inner-cluster distances of all data objects in the
dataset: D(X) = {D(x1), D(x2), . . . , D(xN)). The fitness
function used to evaluate clustering C is the cumulative inner-
cluster distance of the clustering:

f(C) =

k∑
i=1

D(ci) (2)

where ci ∈ C.

3. ALGORITHM DESCRIPTION

The algorithm, called Heuristic Memetic Clustering Algo-
rithm (HMCA) then works as follows: After an initial pop-
ulation of clusterings (individuals) is created and their fit-
ness evaluated, HMCA iteratively approximates an optimal
clustering. Each iteration (generation) a single local-search
operator is applied to each (parent) individual, creating one
(offspring or child) individual by moving one data object
from one cluster to another (relabelling) guided by up to
three heuristics. The offspring individual is then repaired
(if necessary), and its fitness evaluated. Parent and child
populations are then merged and made available for the next
generation by a survivor selection operator. HMCA stop iter-
ating based on a halting condition. Details of these operations
and operators are provided below.

3.1. Fitness Evaluation Function

The fitness evaluation function used by HMCA evaluates
individuals by calculating the cumulative inner-cluster dis-
tance of its clustering, defined in Equation 2. Calculating
the inner-cluster distance of a cluster c requires 1

2 |c|(|c| − 1)
distance calculations, but all distance calculations required
are between data objects in the dataset only. Speed up during
experimentation is achieved by maintaining a cache of the
distances between these data objects. Only required distances
are calculated or taken from the cache, and flags in the indi-
vidual are used to avoid recalculating data objects that have
not been relabelled.

3.2. Individual Representation

Clusterings, i.e., individuals in HMCA are represented using
an Integer Label-based Encoding, also used in [11, 12, 13].
This encoding uses a vector or array of length N , with each
position assigned an integer label between 1 and k, so that the
i-th position (gene) represents the i-th data objects with the
i-th label indicating cluster ci to which it is assigned. The
fitness evaluation value is also stored by the individual, along
with a number of convenience statistics and flags to reduce
computation effort by the algorithm (see 3.1).

3.3. Initialisation, Repair, Survivor Selection, and Halt-
ing Condition

Individuals are initialised in two steps: first, all k clusters are
assigned a unique uniform randomly selected data objects;
then all remaining data objects are assigned a uniform ran-
domly selected cluster. This initialisation method assures that
initialised individuals do not contain empty clusters.

Empty clusters may be created during the search. A re-
pair operator is applied to each newly generated individual to
repair this. Upon finding an empty cluster, this repair opera-
tor assigns a uniform randomly selected data object from the
largest (in size) cluster in the individual to the empty cluster.

The survivor selection operator creates a merged parent
and offspring population equal in size to the population size
parameter. Both populations are first merged, then ordered
by fitness value, with individuals from the merged population
unable to make the cut discarded. Only unique individuals are
considered, duplicate clusterings are discarded as well with
uniqueness is determined based on cluster content, not label
values.

The HMCA uses a halting condition operator to terminate
the algorithm after a fixed maximum number of distance cal-
culates has been reached. The maximum number of distance
calculations is set as a parameter of the algorithm. The halt-
ing condition is evaluated at the beginning of an iteration or
generation, so the actual number of distance calculations may
vary between runs. Compared to a maximum number of it-
erations, using a maximum number of distance calculations
provides a fair measure for comparing different variants of
the HMCA, e.g., between one where the search operator uses
few distance calculations and one that uses many. Although
the HMCA caches distance calculations, cache lookups are
still counted as full calculations for the halting condition.

3.4. Heuristic Local-Search Operator

The search operator generates an offspring clustering in two
steps: the first step selects a data object xi ∈ X; the second
step selects a new cluster to which the data object is trans-
ferred: cj ∈ C with xi ∈ cl and j 6= l. Selection of the
data object in step one can be done in two ways: selecting
a data object from the whole set of data objects x ∈ X , or,

first selecting a cluster c ∈ C and then selecting a data object
from the cluster (x ∈ c). Selection of the data object and the
cluster is done by a heuristic, which is in essence a selector.

The search operator may then sequentially use three types
of heuristics: a cluster heuristic HC → c, a data object
heuristic HX → x, and a (cluster) label heuristic Hc → c.
Several selectors S are defined for use in these heuristics, each
selector defined to use some criterion for selecting one ele-
ment from a set: Smax(Y) → y selects the maximum ele-
ment y ∈ Y ; Smin(Y) → y selects the minimum element
y ∈ Y ; Srnd(Y) → y selects a uniform random element
y ∈ Y ; and Srnd

W selects an element y ∈ Y proportionally ran-
dom, with each element y ∈ Y weighted by corresponding
weight w ∈W (|Y| = |W|) and the probability of selection
proportional to the corresponding weight.

For all three types of heuristics we define a benchmark,
lower-bound, or reference heuristic, called the null-heuristic:
HC

0 , HX
0 , and Hc

0 . The cluster null-heuristic HC
0 does not se-

lect a cluster, instead it tells the subsequent data object heuris-
tic to select a data object from the set of all data object (x ∈
X) instead of the from the set of data objects contained in
a single (selected) cluster (x ∈ c with c ∈ C). The data ob-
ject null-heuristic either selects a data object uniform random:
HX

0 : Srnd(X) → x, or uniform randomly from a previously
selected cluster c: HX

0 : Srnd(c) → x. Note that, without
loss of generality, the search operator does not have a (null-)
heuristic combination that uniform randomly selects a clus-
ter to then uniform randomly select a data objects from it:
HX : Srnd(Srnd(C)) → x. The label null-heuristic uniform
randomly selects a new cluster from the clustering, excluding
the cluster to which the previously selected data object x ∈ X
belongs to: Hc

0 : Srnd(C′) with C′ = C− c where x ∈ c.
Note that the selectors above all operate sequentially on

sets of sets, e.g., the selector Smin(Smax(C)) → x first se-
lects the ’maximum’ data object c ∈ C, and then selects the
data object in the subsequently created set of selected data ob-
jects. This sequential property is used to define the remaining
heuristics the search operator uses, but requires the definition
of further set-transforms: T . Set-transforms apply a given
operator to all elements of the set, producing a transformed
set of the same size as the original. Two set transforms are
required: division T div

z (Y) = {y1

z , y2

z , . . . ,
y|Y|
z }; average,

a special case of division: T avg(Y) = {y1

z , y2

z , . . . ,
y|Y|
z }

where z =
∑|Y|

i=1 yi

|Y| . Finally, a single set-operator is required:
the set-summation, which sums the values of a set to provide
a single value:

∑
(Y) =

∑|Y|
i=1 yi with yi ∈ Y. Naturally,

for all selectors, transforms, and the operator holds that the
set must contain elements on which the defined operations
are valid.

Cluster and data objects heuristics are then based col-
loquially around maximising the fitness contribution (f.c.),
while label heuristics are based around minimising distance
to cluster (d.t.c.). These can be used for a direct selection, or

one based on proportional selection (prop.), and taken as is,
as an average (avg), or as a total. The non-null heuristics of
the search operator can then be defined as follows:
1. Cluster heuristics:

(a) Largest f.c.: HC
1 :Smax(D(C))→c.

(b) Largest average f.c.: HC
2 :Smax(T avg(D(C))→c.

(c) Proportional f.c.: HC
3 :Srnd

D(C)(C))→c.
(d) Proportional average f.c.: HC

4 :Srnd
T avg(D(C))(C)→c.

2. Data object heuristics (Y = {X|c ∈ C}):
(a) Largest f.c.: HX

1 :Smax(D(Y))→x.
(b) Largest average f.c.: HX

2 :Smax(T avg(D(Y))→x.
(c) Proportional f.c.: HX

3 :Srnd
D(Y)(Y))→x.

(d) Proportional average f.c.: HX
4 :Srnd

T avg(D(Y))(Y)→x.
3. Label heuristics for previously selected x and Y = C− c

with x ∈ c:
(a) Least d.t.c.: Hc

1 :S
min(Smax

∀y∈Y(d(x,y)))→c.
(b) Lst avg d.t.c.: Hc

2 :S
min(T div

|y|(S
max
∀y∈Y(d(x,y))))→c.

(c) Least total d.t.c.: Hc
3 :S

min(
∑
∀y∈Y(d(x,y)))→c.

(d) Prop. min. d.t.c.: Hc
4 :S

rnd
1

Smax
∀y∈Y

(d(x,y))

(Y))→c

(e) Pp. min. avg d.t.c.: Hc
5 :S

rnd
1

T div
|y|(S

max
∀y∈Y

(d(x,y)))

(Y))→c

(f) Prop. min. total d.t.c.: Hc
6 :S

rnd
1∑

∀y∈Y(d(x,y))

(Y))→c

4. DATASETS

Three commonly used datasets were used to evaluate the per-
formance of our algorithms. This facilitates the comparison of
the performance of HMCA with other clustering algorithms.
The first two datasets are collected data, the final dataset is
generated.

The first dataset used is the Iris flower dataset introduced
by Ronald Fisher [14]. Also called the Fisher’s Iris dataset,
it is a multivariate dataset of collected Iris flowers of k = 3
related species. The dataset consists of 50 samples from each
of three species of Iris (Iris Setosa, Iris Virginica, and Iris
Versicolor) for a total of N = 150 with n = 4 measured
features for each sample.

The second dataset used is the Glass Identification dataset,
or Glass dataset. It too is a multivariate dataset of n = 9 col-
lected chemical compositions of glass. The dataset consists
of N = 217 samples, clustered into k = 6 clusters of variable
size, the largest includes 76 data objects, the smallest only 9.

The third and final dataset used is a generated Quadrature
Amplitude Modulation (QAM) dataset. QAM is both an ana-
log and a digital modulation scheme in which two analog or
digital streams are modulated by the amplitudes of two car-
rier waves. The two carrier waves, usually sinusoids, are out
of phase with each other by 90 degrees, producing a quadra-
ture component, hence the name of the scheme. QAM is used
extensively as a modulation scheme for digital telecommuni-
cation systems. Here 16-QAM is used where signal streams
are originally modulated on a 4 × 4 = 16 grid, after which

12dB of Gaussian noise is added. N = 1024 data objects
are uniform randomly generated, each with n = 2 features or
coordinates. These are to be clustered in k = 16 clusters.

5. EXPERIMENTAL METHOD

Combining null- and non-null heuristics there are 5 cluster
heuristics, 5 data object heuristics, and 7 label heuristics, for
a total of 5 · 5 · 7 = 175 variants of the HMCA. The ex-
perimental method for evaluating HMCA consists of running
all 175 variants of the algorithm for different population size
parameter settings. The number of clusters is fixed by pa-
rameter equal to the number of clusters of each dataset: Iris
k = 3, Glass k = 6, and 16-QAM k = 16. The population
size parameter was taken from the set Psize ∈ {1, 2, 5, 10}
so as to cover a range of possibilities. For the halting con-
dition we set a maximum of 10, 000, 000 distance calcula-
tions for the Iris and Glass datasets, and 20, 000, 000 for the
16-QAM datasets. These values were found experimentally
and allow the HMCA search to stabilise around a global opti-
mum. Since HMCA is a stochastic problem solver, and thus
non-deterministic, we ran HMCA 25 times and averaged all
results. For each dataset we ran 25 · 4 · 175 = 17, 500 inde-
pendent runs.

We evaluate the efficiency and effectiveness of HMCA by
looking at the fitness value behaviour of the algorithm during
the run, and by calculating the accuracy of the evolved clus-
terings. Clustering accuracy is calculated by compiling the
confusion matrix of all best evolved clusterings. We then take
the maximum sized cluster in the matrix for each generated
clustering for each truth data value taken from the original
dataset (for 16-QAM this is the dataset before noise was ap-
plied). All data objects labelled outside the maximum sized
cluster are considered to be labelled incorrectly.

We compare the performance of the HMCA with the per-
formance of the k-Medoids algorithm. Our version of the
k-Medoids algorithm was reimplemented to make use of the
same benefits as the HMCA (e.g. the cache) and restricted to
the same limitations, i.e., the maximum number of distance
calculations allowed. This ensures as fair a comparison as
possible.

We believe that this exhaustive experimental setup, and
these performance measures will provide us with the statis-
tically significant results required to draw robust conclusions
on both the efficiency and effectiveness of the algorithm. All
relevant data is provided to facilitate comparison with other
clustering algorithms.

6. EXPERIMENTAL RESULTS

Figure 1 shows the behaviour of the HMCA during the run.
Along the horizontal axis the number of distance calculations
are shown. Along the vertical axis the average values are
shown. A selection of 8 better performing variants of the

 4.5e+09

 5e+09

 5.5e+09

 6e+09

 6.5e+09

 7e+09

 7.5e+09

 8e+09

 8.5e+09

 9e+09

 9.5e+09

 0 2e+06 4e+06 6e+06 8e+06 1e+07

A
v
e
ra

g
e
 B

e
s
t
F

it
n
e
s
s

Distance Lookups

1-2-4-2
1-2-3-2
1-3-3-2
1-3-4-2
1-4-3-2
1-0-4-2
1-4-4-2
1-0-3-2

k-Medoids

a. Iris

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 0 2e+06 4e+06 6e+06 8e+06 1e+07

A
v
e
ra

g
e
 B

e
s
t
F

it
n
e
s
s

Distance Lookups

1-0-1-2
1-0-3-2
1-1-2-2
1-2-1-2
1-1-4-2
1-4-4-2
1-3-4-2
1-3-3-2

k-Medoids

b. Glass

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0 5e+06 1e+07 1.5e+07 2e+07

A
v
e
ra

g
e
 B

e
s
t
F

it
n
e
s
s

Distance Lookups

1-0-4-2
1-2-1-0
1-0-3-1
1-2-0-2
1-1-0-2
1-2-3-2
1-4-3-2
1-4-4-2

k-Medoids

c. 16-QAM

Fig. 1. HMCA Fitness value behaviour graphs for the Iris, Glass, and 16-QAM dataset.

HMCA are plotted as thin gray lines, each identified by a
combination of 4 hyphenated numbers sequentially identify-
ing: population size, cluster heuristic, data object heuristic,
and label heuristic. The other variants, with poor perfor-
mance, are not plotted so as to not overwhelm the graphs.
The behaviour of the k-Medoids algorithm (using the same
HMCA fitness evaluation function) is shown as a thick gray
line (distance calculations for fitness evaluation were not
counted for the halting condition). Finally, the thick black
line is a compound line made up of the best performing
variants generated by comparing interpolated values of all
HMCA variants. A selection of the 4 best variants from the 8
shown is used for further analysis below. Subgraph a shows
the results for the Iris dataset, b for the Glass dataset, and c
for the 16-QAM dataset.

The graphs in Figure 1 show that for small number of clus-
ters (Iris dataset, k = 3), k-Medoids has similar performance
to HMCA, although HMCA gets to good clusterings quicker,
i.e., using significantly less distance calculations. For larger
k, HMCA significantly outperforms k-Medoids in clustering
quality, even though k-Medoids produces significantly bet-
ter initial clusterings than the two-step uniform random ini-
tialisation operator does for HMCA. This behaviour is the
same for all three datasets: HMCA first needs to expend sig-
nificantly more distance calculations to evolve a clustering
of equal quality to k-Medoid generated initial clusters. Af-
ter this, especially for larger k, HMCA quickly outpaces k-
Medoids to find clusters of significantly better quality, us-
ing fewer distance calculations. For the 16-QAM dataset, k-
Medoids requires a very large number of distance calculations
improving its initial clustering.

Tables 1, 2, and 3 show the clustering accuracy of the
HMCA on each of the three datasets for the 4 selected vari-
ants. Column ’variant’ indicates the HMCA variant, column
’correct’ the number of correctly clustered data objects cumu-
lative for all 25 independent experiments for the final evolved
individual with the best (lowest) fitness value. Column ’total’
shows the total number of data objects (25N) for each dataset,
with column ’acc.’ showing accuracy of the clustering as the

ratio between of the preceding two columns, higher is better.
Values for the k-Medoids algorithm are included as well.

Table 1 shows the HMCA clustering accuracy on the Iris
dataset, table 2 for the Glass dataset, and 3 for the 16-QAM
dataset. For the Iris dataset there is no accuracy difference
between the different variants of HMCA. All variants cluster
3, 100 from 3, 750 data objects correctly, for an accuracy of
0.83 (rounded to two decimals). For the Glass dataset 3 vari-
ants cluster data objects correctly with an accuracy of 0.53,
with only variant 1-1-4-2 evolving a clustering with a signif-
icantly lower accuracy at 0.39. This is recognisable in Fig-
ure 1 b, variant 1-1-4-2 is the lighter thin line levelling out
well before and above the other variants. For the 16-QAM
dataset, again, 3 of the selected variants cluster the data ob-
jects with comparable accuracy; 0.81 or 0.82. Only variant 1-
2-3-2 clusters the data objects with a lower accuracy of 0.79,
recognisable in Figure 1 c as well. The values for k-Medoids
correspond to the trends visible in Figure 1.

Comparison of the performance of HMCA with other al-
gorithms proposed in literature (e.g. [9, 15]) is made more dif-
ficult since it is only possible on the (collected) Iris and Glass
datasets, and many publications limit themselves to evaluat-
ing efficiency to the platform dependent wallclock-time-to-
solution performance measure. We therefore limited compar-
ison to comparing effectiveness, i.e., clustering quality. We
found that the HMCA produced clusterings of similar or bet-
ter quality to most proposed algorithms. Significant cluster-
ing quality improvement using the chosen distance calcula-
tion measure seem, at any rate, unlikely, while HMCA’s per-
formance gain is primarily focused on efficiency.

Overall, the parameters of the best performing variants
of HMCA show best performance with only a single individ-
ual. Larger populations is not worth the maintenance cost
required in relation to its performance. It is difficult to iden-
tify a best cluster heuristic, although there is a slight prefer-
ence for the proportional random cluster heuristic. For data
object heuristics the choice is more limited, with only the
two proportional random data object heuristics used by the
best performing HMCA variants. Only the least average dis-

variant correct total acc.

k-Medoids 3112 3750 0.83
1-0-4-2 3100 3750 0.83
1-3-4-2 3100 3750 0.83
1-4-3-2 3100 3750 0.83
1-4-4-2 3100 3750 0.83

Table 1. Iris Accuracy Table

variant correct total acc.

k-Medoids 2606 5350 0.49
1-3-3-2 2848 5350 0.53
1-3-4-2 2826 5350 0.53
1-4-4-2 2861 5350 0.53
1-1-4-2 2082 5350 0.39

Table 2. Glass Accuracy Table

variant correct total acc.

k-Medoids 17837 25600 0.70
1-0-4-2 20612 25600 0.81
1-2-3-2 19565 25600 0.76
1-4-3-2 20906 25600 0.82
1-4-4-2 20964 25600 0.82

Table 3. 16-QAM Accuracy Table

tance to cluster label heuristic is used by the best performing
HMCA variants. In general, the analysis of the experimental
results indicate that choosing the heuristics, and the level of
their determinism, becomes more important in the following
order: cluster, data object, and (most important/deterministic)
label heuristic. The best performance trend is then to select
the cluster and/or data object proportionally random, with the
label selected deterministically. In other words; it is more
important to deterministically relabel a selected data object
correctly than selecting which data object to relabel.

7. CONCLUSION

In this paper we introduce a novel clustering algorithm based
on the Memetic Algorithm meta-heuristic, called HMCA.
HMCA iteratively evolves clusterings by applying a single
local-search operator. The novel feature of HMCA is that
the local-search operator incorporates up to three types of
selection heuristics. Several heuristics are defined for each
type of selection, and combinations these heuristics constitute
variants of HMCA. All variants were exhaustively tested on
three commonly used benchmark problems and evaluated on
both behaviour and quality of the found clusterings. HMCA
was compared to the k-Medoids algorithm, reimplemented
to provide a fair comparison. The results show that HMCA
consistently provides better clustering solutions with signifi-
cantly less computational effort.

8. REFERENCES

[1] L. Kaufman and P.J. Rousseeuw, “Finding groups in
data – an introduction to cluster analysis,” Wiley Series
in Probability and Mathematical Statistics, 1990.

[2] J.P. Bigus, Datamining with Neural Networks: solving
business problems–from application development to de-
cision support, McGraw-Hill, 1996.

[3] A.K. Jain and R.C. Dubes, Algorithms for Clustering
Data, Prentice Hall, 1988.

[4] G. Mecca, S. Raunich, and A. Pappalardo, “A new al-
gorithm for clustering search results,” Data and Knowl-
edge Engineering, vol. 62, pp. 504–522, 2007.

[5] P. Baldi and S. Brunak, Bioinformatics – The Machine
Learning Approach, MIT Press, 2nd ed. edition, 2001.

[6] A.K. Jain, M.N. Mutry, and P.J. Flynn, “Data clustering:
A review,” ACM Computing Surveys, vol. 31, pp. 264–
323, 1999.

[7] E. Falkenauer, Genetic Algorithms and Grouping Prob-
lems, John Wiley & Sons, 1998.

[8] V.J. Rayward-Smith, “Metaheuristics for clustering in
KDD,” in In Proc. IEEE Congress on Evolutionary
Computation, 2005, pp. 2380–2387.

[9] E.R. Hruschka, R.J.G.B. Campello, A.A. Freitas, and
A.C.P.L.F. de Carvalho, “A survey of evolutionary al-
gorithms for clustering,” IEEE Trans. on Systems, Man,
and Cybernetics – Part C: Applications and Reviews,
vol. 39, no. 2, pp. 133–155, 2009.

[10] B.G.W. Craenen and A.E. Eiben, “Hybrid evolu-
tionary algorithms for constraint satisfaction problems:
Memetic overkill?,” in Proceedings of the 2005 Con-
ference on Evolutionary Computing (CEC 2005). Sep
2005, IEEE Computer Society Press.

[11] K. Krishna and N. Murty, “Genetic k-means algorithm,”
IEEE Trans. on Systems, Man, and Cybernetics – Pt. B:
Cybernetics, vol. 29, pp. 433–439, 1999.

[12] R. Krovi, “Genetic algorithms for clustering: A prelim-
inary investigation,” in Proceedings of the 25th Hawaii
Int. Conference on System Sciences, 1992, vol. 4, pp.
540–544.

[13] C.A. Murthy and N. Chowdhury, “In search of optimal
clusters using genetic algorithms,” Pattern Recognition
Letters, pp. 825–832, 1996.

[14] R.A. Fisher, “The use of multiple measurements in tax-
onomic problems,” Annals of Eugenics, vol. 7, no. 2, pp.
179–188, 1936.

[15] J. Eggermont, J.N. Kok, and W.A. Kosters, “Genetic
programming for data classification: partitioning the
search space,” in SAC, 2004, p. 1001.

