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 
Abstract—This study proposes a novel approach for the 

analysis of brain responses in the modality of ongoing EEG 
elicited by the naturalistic and continuous music stimulus. The 
512-second long EEG data (recorded with 64 electrodes) are first 
decomposed into 64 components by independent component 
analysis (ICA) for each participant. Then, the spatial maps 
showing dipolar brain activity are selected in terms of the residual 
dipole variance through a single dipole model in brain imaging, 
and clustered into a pre-defined number (estimated by the 
minimum description length) of clusters. Subsequently, the 
temporal courses of the EEG theta and alpha oscillations of each 
component for each cluster are produced and correlated with the 
temporal courses of tonal and rhythmic features of the music. 
Using this approach, we found that the extracted temporal 
courses of the theta and alpha oscillations along central and 
occipital area of scalp in two of the selected clusters significantly 
correlated with the musical features representing progressions in 
the rhythmic content of the stimulus. We argue that this 
demonstrates that with the proposed approach we have managed 
to discover what kinds of brain responses were elicited when a 
participant was listening continuously to the long piece of 
naturalistic music.  

Index Terms—Acoustical features, Clustering, EEG, 
Independent component analysis, Natural continuous music, 
Ongoing, Oscillation 
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I. INTRODUCTION 

EVEALING brain states during real-word experiences has 
been an attractive problem in the past few decades. 

However, due to the complexity of the human brain, the state 
under the naturalistic stimuli including music and video has 
only recently been decoded through functional magnetic 
resonance imaging (fMRI) [1-6] and magnetoencephalography 
(MEG) [7, 8]. Brain states during real-world experiences, 
resulting in relatively low signal-to-noise ratio (SNR) in 
collected data, are in general more complicated to analyze, than 
those recorded during the resting state or under the controlled 
and rapidly repeated stimuli. FMRI and MEG possess better 
properties for source localization than another well-known 
method for brain imaging: electroencephalography (EEG) [9]. 
Furthermore, in the order of fMRI, MEG and EEG, the SNR in 
the corresponding datasets tends to decrease. As a result, the 
brain imaging during the real-world experiences has been 
mostly studied through fMRI. However, due to the surprisingly 
high cost in establishing and maintaining relevant laboratories, 
fMRI and MEG are not as extensively used as EEG, which does 
limit the extensive study of brain imaging under real-word 
experiences. Previous studies have shown that the listener’s 
fMRI data can be significantly correlated with the music 
stimulus [1] and that from the listener’s MEG signals fragments 
of naturalistic speech can be identified [8]. Hence, it would be 
natural to infer that the listener’s ongoing EEG data can be 
closely associated with an auditory stimulus including speech 
and music as well. As such, this study is targeted to formulate 
an approach for linking brain responses to naturalistic and 
continuous music by analyzing the elicited ongoing EEG and 
correlating it to the music and its features. Using this approach, 
the authors hope that brain states during real-word experiences 
may be investigated more extensively in more brain imaging 
laboratories. 

EEG is the recorded electrical activity along the scalp by 
electrodes. It was first reported by Hans Berger in 1929 [10].  
At that time, spontaneous EEG was recorded while a 
participant was resting, and no external stimuli were presented 
to the participant [10, 11]. In 1939, Davis et al. reported 
event-related potentials (ERPs) which were elicited by auditory 
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stimuli [12, 13]. ERPs are the averaged EEG activity 
time-locked to the presentation of repeated visual, 
somatosensory or auditory stimuli [13]. With the development 
of powerful computational tools, spontaneous EEG have been 
used for the clinical purposes such as epilepsy, coma, tumors, 
stroke [11], diagnosis of brain death [14], and so on. 
Furthermore, spontaneous EEG, and particularly, its derivative, 
ERPs, are extensively studied in the fields of neuroscience, 
psychology, physiology, and cognition [13]. Moreover, the 
recently developed brain computer interface (BCI) extends the 
use of spontaneous EEG and ERPs in more practical situations 
[15]. Nevertheless, spontaneous EEG is still usually recorded 
with the participant in a resting state [11], and the ERPs are 
mostly collected under the specially designed presentation of 
controlled stimuli [13]. Hence, these two types of EEG data 
cannot straightforwardly reflect the activity in the brain in more 
naturalistic and general conditions of a participant, for 
example, when a participant is watching a video, listening to 
music, even walking [16]. It is of great interest and benefit to 
know the brain state of a participant through ongoing EEG [17].  

One of the difficulties of studying ongoing EEG lies in 
analyzing such data in the complicated and more naturalistic 
and continuous conditions. The question of how to decompose 
the data and how to find components of interest still remains  
open for scientific research. This study will focus on the 
challenging topic of examining elicited ongoing EEG collected 
while the participant was listening to a 512-second long piece 
of continuous music. A novel method for analyzing ongoing 
EEG data is proposed. 

II. OVERVIEW  

Sanei and Chambers reviewed data processing approaches for 
spontaneous EEG and ERPs [18]. For spontaneous EEG, 
particularly for data recorded when a participant is sleeping, the 
duration of the whole recording can be dozens of minutes, even 
several hours. Then, a sliding window with the length of a few 
seconds is often used to segment the long EEG data. Next, the 
power spectrum of the short EEG data in each segment can be 
analyzed based on EEG oscillations with different frequency 
bands. Subsequently, the state of sleep can be concluded [11, 
18].  In other words, for such long spontaneous EEG data, EEG 
oscillations based on spectrogram of the data are analyzed. 

For ERPs, the peak measurements based on the stimulus 
onset and the event-related oscillations (EROs) [19] in the time, 
frequency, and time-frequency domains are often used to 
represent the ERP related brain activity for analysis [13, 20, 
21]. In such a situation, the information of EEG data in one of 
time, frequency and time-frequency domains, and the spatial 
domain, is exploited sequentially. Moreover, in order to 
simultaneously exploit the information of EEG data in the time 
and spatial domains, multi-dimensional signal processing 
methods consisting of principal or/and independent component 
analysis (PCA/ICA) and tensor factorization can be performed 
on the multi-way EEG data [18].  

From the view of data formations of spontaneous EEG, 
ongoing EEG, and ERPs, ongoing EEG elicited by the 

naturalistic and continuous stimulus actually possess the 
continuity property of spontaneous EEG and the event-related 
characteristic of ERPs. Hence, the analysis of ongoing EEG can 
be based on the EEG oscillations elicited by the naturalistic and 
continuous stimulus. Indeed, EEG oscillations represent 
cognitive functions [22]. Particularly, theta and alpha have 
been elicited by the controlled and repeated music pieces which 
were short [23-25]. When the music stimulus is naturalistic, 
continuous and long, the collected ongoing EEG can be 
segmented first, and then, the power of theta and alpha can be 
calculated to formulate the temporal courses of EEG 
oscillations for further investigation. We follow this idea here.  

Collected EEG data are generally assumed to be linear 
mixtures of a number of unobserved and underlying electrical 
brain activities [26, 27]. It is necessary to separate the mixtures, 
i.e., the recorded EEG data, to obtain the desired underlying 
brain activities (EEG oscillations elicited by the naturalistic and 
continuous music stimulus in this study). In order to achieve 
this goal, filters, such as, a digital filter and wavelet filter [28, 
29] with optimal passbands, and spatial filters like ICA [21, 
30], are often used to filter the collected EEG, as well as a 
combination of them [31, 32]. In this study, we used ICA to 
decompose 64-channel ongoing EEG into 64 independent 
components for each participant.   

However, with ongoing EEG elicited by the naturalistic and 
continuous music, we do not have enough knowledge from 
such ongoing EEG to select the component of interest extracted 
by ICA. Thus, in the experiment described here, prior 
knowledge does not originate from the EEG data, but from the 
music used as the stimulus. We select relevant components by 
measuring the correlation coefficients between temporal 
courses of theta and alpha oscillation of a temporal component 
extracted by ICA and the temporal course of each musical 
feature. A significant correlation indicates that the EEG data is 
closely associated with the music, which is of interest in the 
experiment. Then, the spatial component parallel to a selected 
temporal component reveals the spatial map of the brain 
activity elicited by the music.  

The remainder of the study is then structured as follows: 
Methods for ongoing EEG data processing and analysis are 
introduced in Section III, with the results presented in Section 
IV. Finally, the discussion and conclusion on the results and the 
methods are presented in Section V.     

III. METHOD 

A. Data description  

This study uses the EEG data of fourteen right-handed and 
healthy adults aged 20 to 46 years old. No participants reported 
hearing loss or had history of neurological illnesses. None of 
participants had musical expertise. During the experiment, 
participants were told to listen to music and sit as still as 
possible with eyes open. An 8.5-minute long musical piece of 
modern tango by Astor Piazzolla was used as the stimulus [1]. 
The EEG data were recorded with 10-20 system with BioSemi 
bioactive electrode caps (64 electrodes in the cap plus 5 
external electrodes at the tip of the nose, left and right mastoids 
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and around the right eye both horizontally and vertically). The 
direct-current mean value between each measuring electrode 
and the Common Mode Sense electrode was kept under ±25 
µV. EEG were collected with the sampling rate of 2048 Hz and 
saved for off-line processing. The external electrode of the nose 
was used as the reference and the data were preprocessed in 
EEGLAB [21], and then were down-sampled to 256 Hz, and 
high-pass and low-pass filtered with 1 Hz and 30 Hz cutoff 
frequencies. 

After the experiment, the EEG data were visually checked 
and no obvious artifacts from head movement were found. The 
data were used for further analysis.     

B. Musical features 

Five musical (tonal and rhythmic) features studied in [1] are 
examined here. The features were extracted using a 
frame-by-frame analysis approach commonly used in the field 
of Music Information Retrieval (MIR). The duration of each 
frame was 3 seconds and the overlap between two adjacent 
frames was 1 second, thereby resulting in five musical feature 
temporal courses at a sampling frequency of 0.5 Hz. All 
features were extracted using the MIR toolbox [1, 33].  

For completeness, the five features are briefly introduced 
below. Two tonal and three rhythmic features were extracted. 
For the former, Mode, i.e., strength of major of minor mode, 
and, Key Clarity, i.e., the measure of the tonal clarity, were 
produced. The rhythmic features include Fluctuation Centroid, 
Fluctuation Entropy, and Pulse Clarity [1]. Fluctuation centroid 
is the geometric mean of the fluctuation spectrum representing 
the global repartition of rhythm periodicities within the range of 
0–10 Hz [1]. This feature indicates the average frequency of 
these periodicities. Fluctuation entropy is the Shannon entropy 
of the fluctuation spectrum representing the global repartition 
of rhythm periodicities. It is a measure of the noisiness of the 
fluctuation spectrum. For example, a noisy fluctuation 
spectrum can be indicative of several co-existing rhythms of 
different periodicities, thereby indicating a high level of 
rhythmic complexity [1]. Pulse Clarity, naturally, is an estimate 
of clarity of the pulse [1]. 

C. Conventional data analysis based on spectrogram in the 
electrode field 

The short-time Fourier transform (STFT) was applied to the 
filtered EEG in order to obtain the corresponding spectrogram, 
i.e., time-frequency representation. The duration of the window 
was three seconds, the overlap ratio between two adjacent 
windows was 33.3%, and the number of points for Fourier 
transform was 1024, and in addition a Hamming window was 
used.  After the spectrogram of the EEG data was obtained, the 
temporal course of an EEG oscillation can be produced by 
integrating the power of the spectrogram over the frequency 
range of the oscillation at each timestamp of the spectrogram. 
For example, the theta oscillation ranges from 4 to 8 Hz and the 
alpha is from 8 to 13 Hz [11]. Subsequently, the temporal 
courses of theta and alpha oscillations were produced at each 
channel. Then, each temporal course of an EEG oscillation was 
correlated with each temporal course of each musical feature. 

Hence, for a pair of one EEG oscillation and one musical 
feature, there was one correlation coefficient at each electrode. 

D. Independent component analysis  

ICA has been extensively used to study brain signals [30], and it 
is based on the linear transformation model associating the EEG 
recordings (ܠ) along the scalp and the electrical sources (ܛ) in 
the brain. The model without sensor noise can be expressed as 

ܠ ൌ  (1)                                       ,ܛۯ

where ܠ ൌ ሾݔଵ, ⋯,ଶݔ , ܛ ,ூሿ்ݔ ൌ ,ଵݏൣ ⋯,ଶݏ , ௃൧ݏ
்
, and  ۯ with the 

full column rank is usually called as the mixing matrix regarding 
ICA, and in this study we designate it as the mapping matrix 
containing coefficients to map sources in the brain to points 
along the scalp. For any source, its mapping can be illustrated as 

௥ܠ ൌ ௥܉ ∙  ௥,                                 (2)ݏ

where, ܠ௥ ൌ ,ଵ,௥ݔൣ ⋯,ଶ,௥ݔ , ூ,௥൧ݔ
்

௥܉ ,  is one column of ۯ with 
ݎ ∈ ሾ1,  in (1) any ܠ ௥ is not the mixture likeܠ ,ሿ. In this caseܬ
more, but is the sole information of one brain source. Hence, one 
goal to apply ICA is to extract the mapping of one source in (2) 
from the mixture in (1) [34, 35].  For simplicity without losing 
generality, we assume ܫ ൌ ܬ  here. In order to obtain (2), an 
unmixing matrix is first learned by ICA [36], and then it 
transforms the mixture in (1) into independent components as 

ܡ ൌ  (3)                                   .ܠ܅
Usually, any component of interest is selected according to prior 
knowledge from EEG and/or from the stimulus and is then 
projected back to the electrode field to correct the variance 
indeterminacy of the extracted component by ICA [26, 27, 
37-39] through 

௞܍ ൌ ௞܊ ∙  ௞,                                (4)ݕ
۰ ൌ  ଵ,                                   (5)ି܅

where ܍௞ ൌ ൣ݁ଵ,௞, ݁ଶ,௞,⋯ , ݁ூ,௞൧
்

௞܊ ,  is one column of ۰, ݕ௞  is 
one element of ܡ and ݇ ∈ ሾ1, ሿܫ . In this way, we obtain the 
desired electrical brain activity’s magnitude with the unit of the 
microvolt in the context of EEG recordings [26, 27]. 
Furthermore, the global matrix of ICA can be defined as [40],  

۱ ൌ  (6)                                   ,ۯ܅
where  ܿ௞௜  is the ሺ݇, ݅ሻ element of the global matrix ۱. Only 
under the perfect ICA decomposition (refereed as global 
optimization in [34, 35]), there is only one nonzero element in 
each row and column of ۱ [40], and then, Eq. (4) turns [34, 35] 

௞܍ ൌ ௞܊ ∙ ሺܿ௞௥ݏ௥ሻ



BC A

௥܉ ∙ ௥ݏ ൌ  ௥,              (7)ܠ
where ܿ௞௥ is the nonzero element.  
 Under the perfect ICA decomposition, we obtain the 
following points: 1) the estimated ܊௞ is the scaled version of the 
mapping coefficients ܉௥ , i.e., the spatial map of the relevant 
source, 2) ݕ௞  is the scaled version of ݏ௥ , and 3) ܍௞ , i.e., 
projection of ݕ௞, is equal to ܠ௥, i.e., the mapping of ݏ௥ along the 
scalp [34, 35]. So, the projection of an ICA component in the 
electrode field does not have variance or polarity indeterminacy 
under the perfect ICA decomposition in theory [34, 35]. For 
example, ICA is run twice on the same dataset and the perfect 
ICA decomposition is obtained in each round. If ݕ௞భ and ݕ௞మ are 
associated with the source ݏ௥ in the respective two rounds, the 
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absolute value of correlation coefficient between  ݕ௞భ and ݏ௥, or 
between ݕ௞మ and ݏ௥, is ‘1’, and ݕ௞భ and ݕ௞మ tend to be different 
scaled versions of ݏ௥, and their projections in the electrode field 
are completely identical and the same as ܠ௥.   

However, practically, the perfect ICA decomposition is hard 
to obtain, which means that there are more than one nonzero 
element in some rows and column of ۱ [34, 35]. In this case, ܊௞, 
௞܍ ௞ andݕ  just approximate the scaled versions of  ܉௥, ݏ௥  and 
௥ܠ , respectively, and the errors are associated with the 
performance of ICA decomposition, i.e., how well the mixtures 
are separated by ICA [34, 35]. For example, ICA is run twice on 
the same dataset and the imperfect ICA decomposition is 
obtained in each round. If ݕ௞భ  and ݕ௞మ  in the two rounds are 
regarded as the components closely associated with the source 
 ௞భݕ  ௥, the absolute value of correlation coefficient betweenݏ
and ݏ௥ , or between ݕ௞మ  and ݏ௥ , or between ݕ௞భ  and ݕ௞మ , is 
smaller than ‘1’, and projections of ݕ௞భ and ݕ௞మ in the electrode 
field are probably not completely identical. Therefore, the 
stability of ICA decomposition is one of the critical issues when 
ICA is used to study brain signals [30].  

An evaluation of the performance of ICA decomposition for 
our study will be given in Results section. In this study, unlike 
the analysis of ܍௞, i.e., the multiplication between ܊௞ and ݕ௞, in 
the research of ERPs [21, 26, 27, 31, 41], we will exploit ܊௞ and 
௞ݕ  in the component space hereinafter. The stability and 
reliability of the ICA components will be analyzed next to 
confirm that the ICA decomposition is acceptable for further 
analysis to draw any conclusions.      

E. ICA decomposition-stability and reliability  

ICA was applied to the EEG data to estimate the unmixing 

matrix and extract 64 independent components for every 
participant using ICASSO software [42]. The reason to extract 
64 components resulted from 64 electrodes used to collect the 
EEG data [21]. For ICASSO, InfomaxICA [43] was applied 30 
times and 64 components were extracted at each run. Each time 
the default set for other parameters and algorithms was used.  

The advantage of this software is that the stability of ICA 
decomposition can be analyzed. It may run one ICA algorithm 
many times respectively with individually and randomly 
initialized unmixing matrices; then, all the extracted 
components are clustered into the predefined number of 
clusters; finally, each common component in each cluster 
represents one component extracted by ICASSO and the 
stability index denoted by IQ is calculated for such a component 
[42]. IQ is the cluster quality index to reflect the compactness 
and isolation of a cluster as 

IQ ൌ ܵ̅ሺ݅ሻ௜௡௧ െ ܵ̅ሺ݅ሻ௘௫௧ 
where ܵ̅ሺ݅ሻ௜௡௧  and ܵ̅ሺ݅ሻ௘௫௧ are averages of intra- and 
extra-cluster similarities [42], respectively, and ݅ ൌ 1,⋯ , ܬ , 
where ܬ is the number of clusters. The IQ ranges from ‘0’ to ‘1’. 
When IQ approaches ‘1’, it means that the corresponding 
component is extracted in almost every ICA decomposition 
application. This indicates a high stability of the ICA 
decomposition for that component. Otherwise, it means the 
ICA decomposition is not stable. Correspondingly, if all the 
clusters are isolated with each other, ICA decomposition should 
be stable and satisfactory. Otherwise, the extracted components 
are unacceptable for further analysis. We use magnitude of IQ 
as the criterion to evaluate stability of the ICA decomposition 
in this study.  
 ICASSO just reports the stability of ICA decomposition. In 

 
 
Fig. 1. Diagram of advanced data processing and analysis for ongoing EEG 
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order to validate the reliability of an ICA component, we follow 
the approach analyzing the residual dipole variance of each 
component through a single equivalent dipole model in brain 
imaging [44]. It has been recently found that independent EEG 
sources are dipolar [44]. As a result, if most of the ICA 
components are not dipolar, ICA decomposition is not 
acceptable even if its stability is high.  
 After the analysis of residual dipole variance of each 
component, the components with the residual dipole variance 
less than 15% were chosen for the further analysis.  

F. Clustering selected spatial maps showing dipolar activity 

In this study, each component has one spatial map with 64 
parameters due to 64 electrodes. Since ICA was performed on 
individual EEG datasets, we can find the common information 
among most of participants by clustering spatial maps in order 
to draw a reliable conclusion. For reliable clustering, the mean 
of each spatial map was equalized and each map was 
normalized towards its standard deviation. All the selected 
spatial maps showing the dipolar brain activity were clustered 
into Q clusters to find the common spatial maps across most of 
participants. For clustering, we used ‘k-means’ clustering 
algorithm [45] with the Kaufman Approach (KA) [46]  for 
initializing the algorithm. The number of clusters, Q, was 
determined by a model order selection method called the 
minimum description length (MDL) [47].   

During real-world experiences, finding relevant brain 
activities elicited by naturalistic and continuous auditory 
stimulus can be realized by correlating the temporal courses of 
brain activities and the temporal courses of features of the 

stimulus [1, 8]. If the correlation is significant, the 
corresponding brain activity is regarded to be associated with 
the stimulus [1, 8]. Fig.1 summarizes the advanced data 
processing and analysis for ongoing EEG in this study.  

G. Finding contributors to interesting clusters 

In order to find information in the ongoing EEG shared across 
the majority of participants, after clustering, we checked, for 
each cluster, the number of participants whose theta or alpha 
oscillation was correlated with at least one of the five musical 
features. If the number of participants in one cluster was less 
than half of all participants, that cluster would be rejected for 
further analysis. Mostly, this is because we consider that such a 
cluster does not reveal information shared among enough 
participants. Subsequently, the temporal courses of theta and 
alpha oscillations were calculated based on the spectrogram of 
the ICA component corresponding to each spatial map in each 
kept cluster. The parameters to calculate the spectrogram of an 
ICA component are the same as those for conventional 
analysis. 

For each kept cluster, correlation analysis was performed 
between the temporal course of each EEG oscillation and that 
of each musical feature. As long as a participant in a kept 
cluster possesses one significant correlation coefficient 
between any oscillation and any musical feature, the brain 
responses of this participant are considered to be associated 
with the music stimulus. Then, this participant is regarded as 
one effective contributor to the cluster.  If there are more than 
half of participants who are effective contributors in one 
cluster, this cluster is concluded to represent the common 
spatial maps associated with the music stimulus across most of 
participants. Also, such a cluster is the cluster of interest in this 
study for conclusions. Fig.2 summarizes all the steps.  

After one cluster was chosen, the included spatial maps, 
possessing at least a significant correlation coefficient between 
theta or alpha oscillation and one of the five musical features, 
were paralleled and averaged to produce the final spatial map of 
the selected cluster. 

H. Determining level of significance of correlation 

Statistically, it is necessary to investigate the significance of the 
correlation coefficient between two temporal courses [1]. Only 
those components whose temporal courses of brain responses 
significantly correlate with the temporal courses of musical 
features would be considered to be relevant to this study. Then, 
the threshold to determine the significant correlation coefficient 
should be given. For the conventional analysis of ongoing EEG 
in this study, one threshold was based on one musical feature 
and 896 temporal courses (64 electrodes by 14 participants) of 
an EEG oscillation. For the advanced data analysis, one 
threshold was derived from one musical feature and K (K is the 
number of spatial maps in one cluster) temporal courses of an 
oscillation. Since the temporal courses of EEG oscillations and 
musical features are inevitably correlated many times, 
correction for multiple comparisons should be applied to 
counter the reduction in statistical power [48].  For this 
purpose, the Monte-Carlo method presented in [1] and the 

 
 
Fig. 2. Diagram to find interesting clusters 
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permutation test procedure [48] were employed to calculate the 
significance of correlation coefficient and to correct for 
multiple comparisons. Given a pair of one musical feature and 
one oscillation, one threshold to determine the significant 
correlation coefficient was calculated. Pearson correlation 
analysis was applied. The components of interest were then 
determined as the ones displaying significant correlations (p < 
0.05) with the musical features. 

By such correlation analysis, for the conventional data 
analysis approach, the temporal course of the EEG oscillation 
activated by the music stimulus could be found in the electrode 
field along the scalp. For the advanced data analysis, the 
interesting spatial map extracted by ICA was determined based 
on the music-associated temporal courses of the EEG 
oscillations of the ICA components in a cluster. In this way, the 
brain responses in the time, frequency and spatial domains can 
be linked to the music stimulus [1]. 

IV. RESULTS 

A. Musical features 

Fig. 3 shows the temporal courses of five musical features. The 
coherences between the Pulse Clarity and Fluctuation Entropy, 
between Fluctuation Entropy and Fluctuation Centroid, and 
between Mode and Key are significant (p < 0.05). For other 
pairs of musical features, the correlation is not significant.  

B.  

 
 

 
Fig. 3. Temporal courses of five musical features. 
 

C. Conventional ongoing EEG data analysis  

The ongoing EEG data were 512 seconds long which makes it 
difficult to present the waveform of the ongoing EEG as shown 
in most of EEG related studies [11, 13]. In order to describe the 
recorded data, the spectrograms of the grand averaged ongoing 
EEG over all the 14 participants at four channels are shown in 
Fig. 4. It can be seen that the alpha oscillation was relatively 
evident at Pz and Oz, and that the alpha and the theta appeared 
at Cz. Indeed, this is based on the grand averaged EEG and no 
information of the individual participants can be exploited.  

Fig. 5 shows the absolute value of the correlation coefficients 
between the temporal courses of two oscillations and the 
temporal courses of five musical features at each electrode. 
Different curves in the figure represent different participants, 

and the dashed straight line denotes the threshold relating to the 
significance level with p < 0.05. For majority of participants, 
the correlation is not significant. Hence, it is difficult to identify 
the brain activities associated with the music stimulus by the 
conventional analysis. Therefore, this motivates us to analyze 
the ongoing EEG with advanced signal processing techniques. 

 
Fig. 4. Spectrograms (4-15 Hz) of the grand average of raw ongoing EEG data. 
The color from ‘blue’ to ‘red’ represents rising magnitude.    
 

 
Fig. 5. Absolute values of correlation coefficients between the temporal courses 
of five musical features and the temporal courses of alpha oscillations of the 
preprocessed ongoing EEG (bottom) at each electrode as well as absolute 
values of correlation coefficients between the temporal courses of five musical 
features at each electrode and the temporal courses of theta oscillations (top). 
Different curves in the figure represent different participants, and the dashed 
straight line denotes the threshold at the significance level with p < 0.05. 

D. ICA decomposition-Stability and Reliability  

In terms of IQ given by ICASSO in Fig. 6, ICA decomposition 
in this study was stable and satisfactory for all the participants. 
For most components, their IQs were greater than 0.75. From 
the view of clustering in ICASSO, the 64 clusters were isolated 
with each other for each participant, indicating ICA 
decomposition was stable.   

 
Fig. 6. IQ of each component extracted by ICA through ICASSO. Different 
curves represent different participants.  
 



> JMEP, MEDS < 
 

7

Fig. 7 describes the histogram of the number of ICA 
components among 896 ICA components under each possible 
residual dipole variance. The number of components with the 
residual dipole variance no greater than 15% is 304 among all 
896 components (about 34.0%). Such parameters indicate an 
acceptable ICA decomposition in this study since quite many 
components are dipolar.  

 

 
Fig. 7. The number of ICA components among 896 ICA components under one 
possible residual dipole variance.   

E. Interesting clusters  

After 304 spatial maps with residual dipole variance less than 
15% were chosen, MDL was performed to estimate the number 
of clusters as nine. The spatial maps were then clustered into 
nine clusters.  After the contributors were found in each cluster, 
clusters #1 and #5 were chosen as only they satisfied the criteria 
for a cluster of interest. Fig. 8 shows the spatial maps of the 
clusters #1 and #5, revealing that the ongoing EEG along the 
central and occipital area in this study could be relevant to the 
music stimulus. Moreover, regarding cluster #1, the mean 
correlation coefficient between individual spatial maps in this 
cluster and the spatial map of this cluster (i.e., the average of 
the individual spatial maps) is 0.81, and the corresponding 
standard deviation (SD) is 0.11. For cluster# 5, the mean is 
0.85, and SD is 0.11. This indicates the memberships in cluster 
#1 or #5 are highly correlated with each other.  

 
 

 
Fig. 8. Spatial maps of the clusters # 1 and # 5. 

   
Table 1. # Contributors in the cluster #1 among 14 participants (from 1 to 14) 
 
 
 
 
 
 
 
 
 

Table 2.  # Contributors in the cluster #5 among 14 participants (from 1 to 14) 
 

EEG  Music 
Pulse 
clarity 

Fluctuation 
entropy 

Fluctuation 
centroid 

Mode Key 

theta 4 N/A 3    10    13 4 10 

alpha 14 8 
  8     9    10   

12    14 
6    13 

12    
13 

 

Furthermore, in order to examine which oscillation appears 
in the central or occipital area along the scalp, the number of 
each contributor regarding each oscillation and each musical 
feature is reported for the clusters #1 and #5 in Tables-1 and 2. 
We find that the alpha and theta oscillations occur in the central 
and occipital area among most of participants, respectively. We 
also find that the musical feature, Fluctuation Centroid, is the 
most functional to elicit the ongoing EEG. Additionally, 
although Pulse Clarity and Fluctuation Entropy, Fluctuation 
Entropy & Fluctuation Centroid, and Mode and Key, are 
correlated (p < 0.05), the corresponding contributors in an 
interesting cluster do not entirely overlap in a pair of correlated 
features. 

V. CONCLUSION AND DISCUSSION 

In order to analyze ongoing EEG during the real-world 
experiences, this study formulates an approach with signal 
processing and analysis methods including digital filtering, 
ICA, brain imaging (analysis of residual dipole variance), 
clustering, acoustical feature extraction, spectral-temporal 
analysis, and correlation. Using this approach, we were able to 
provide the possibility to identify the brain regions involved in 
the processing of long-term acoustical features of modern tango 
from the ongoing EEG. Previously, the same was identified 
from fMRI of musicians [1], and naturalistic speech processing 
was localized from ongoing MEG [8]. As far as the authors are 
aware, this is the first complete formulation of an approach for 
the analysis of ongoing EEG in naturalistic and continuous 
music listening experiences.    
 ICA was used to decompose the ongoing EEG in this study. 
Therefore it is concerned the reliability of ICA components in 
such a new application. Here, the number of dipolar 
components is about 34% of all components when the threshold 
of the residual dipole variance is 15%. We checked the study of 
Delorme et al. [44] introducing the idea to validate the 
reliability of ICA components through the analysis of residual 
dipole variance. We found that such a percentage of the number 
of dipolar components extracted by InfomaxICA from ongoing 
EEG in this study is comparable to those of several ICA 
algorithms from single-trial ERP data in [44]. We think that 
although the ICA decomposition in this study is not perfect, it 
can be acceptable for the further analysis. In the future, we will 
learn more methods for artifacts rejection to test whether the 
ICA decomposition can be improved or not for the analysis of 
ongoing EEG, as well as testing higher sampling frequencies 
for the same purpose. 

Indeed, there could be some time lags between music 
stimulus and the EEG [49, 50]. In this study, since we did not 
keep the reaction time in the experiment, the time lag is not 
available. We assume that the time lag cannot affect the time 
course of one EEG oscillation very much. The power of EEG 
oscillation is determined by every three-second EEG. Given the 
delay of dozens of or a few hundreds milliseconds to the 

EEG  Music 
Pulse 
clarity 

Fluctuation 
entropy 

Fluctuation 
centroid 

Mode Key 

theta N/A 2 
2     5    12    

14 
3 N/A 

alpha 
7    10   

13 
13   2    13  

1     3    
10  14 

5     

Note: ‘N/A’ means that there are no contributors.  
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three-second EEG, the power could not be affected 
significantly. In the future, it will be beneficial to measure the 
reaction time during the experiment. Then, we can precisely 
compare the effect of the delay of EEG for our proposed 
methodology.  

In this study, the clustering was performed on the spatial 
maps. We found that the individual spatial maps in any cluster 
of interest were similar but their corresponding temporal 
courses of alpha or theta oscillations were not similar. This is 
validated by results in Tables 1 and 2 showing that the temporal 
courses of any EEG oscillation were significantly correlated 
with different musical features. Indeed, this is different from 
most of ERP studies where the temporal ICA components 
sharing similar spatial maps might be similar as well (this is 
indeed the basis for group ICA on ERPs [51]). We think the 
difference comes from the responses of participants during 
real-world experiences. EEG has very high temporal resolution. 
Such advantage can capture the different temporal evolutions 
of electrical responses of different people who are listening to 
the naturalistic and continuous music.  
 So far, there are very few publications reporting the analysis 
of ongoing EEG elicited by the naturalistic and continuous 
music. Nevertheless, the previous studies about ERPs elicited 
by the much shorter pieces of music [23-25] may be the suitable 
references for this study. Here, at the occipital area in Fig. 8 
regarding the cluster #1, we found the alpha and theta 
oscillations relevant to the music stimulus. Such alpha activity 
has been denoted as the upper alpha which was elicited when 
listening to music [23] and such theta has not been reported so 
far. At the central area of the spatial map in Fig. 8 for the cluster 
#5, the alpha and theta oscillations associated with the music 
stimulus were discovered. Such theta activity has been reported 
in [23, 25] and such alpha is not discussed earlier. As the 
musical feature is a measure of the rhythmic complexity, our 
results are in line with previous findings that suggest heighted 
alpha activity due to increase in task demands [24], specifically 
while processing complex music [52, 53]. In another study of 
the ERPs elicited by short piano notes [54], the topographies of 
the ERPs revealed relevant brain responses in the central, 
posterior and occipital area along the scalp. Hence, the previous 
studies regarding EEG and music indicate that our findings 
from ongoing EEG elicited by naturalistic and continuous 
modern tango are plausible to be real brain activities, not 
technical artifacts.    
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