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Abstract. The paper introduces a hybrid Tabu Search-Evolutionary
Algorithm for solving the constraint satisfaction problem, called STLEA.
Extensive experimental fine-tuning of parameters of the algorithm was
performed to optimise the performance of the algorithm on a commonly
used test-set. The performance of the STLEA was then compared to the
best known evolutionary algorithm and benchmark deterministic and
non-deterministic algorithms. The comparison shows that the STLEA
improves on the performance of the best known evolutionary algorithm
but can not achieve the efficiency of the deterministic algorithms.

1 Introduction

The last two decades saw the introduction of many evolutionary algorithms
(EAs) for solving the constraint satisfaction problem (CSP). In [1], the perfor-
mance of a representative sample of these EAs was compared on a large ran-
domly generated test-set of CSP-instances. In [2] a more extensive comparison,
including a large number of algorithm variants, was included, this time on a
test-set generated by the latest random CSP generator. One variant algorithm,
the Stepwise-Adaptation-of-Weights EA with randomly initialisated domain sets
(rSAWEA) outperformed all other EAs. However, when the effectivity and the
efficiency of this algorithm was compared to non-evolutionary algorithms, it
was found that the effectivity of the other algorithms was approached by the
rSAWEA but that the efficiency still fell short of the other algorithms.

A major reason for this lack of efficiency is that EAs tend to recheck previ-
ously checked candidate solutions during their run, wasting computational effort.
This paper investigates a way of reducing this waste: the use of a tabu list.

Tabu lists are used in Tabu Search (TS) algorithms ([3]). They are used to
ensure that the algorithm does not return to an already searched neighbourhood
or check a candidate solution twice. Tabu lists and TS have found their way into
EAs before (i.e. [4–6]) but to the authors’ knowledge never for EAs solving
the CSP. Tabu lists, in essence, store already checked candidate solutions. The
algorithm can use the list to determine future search avenues or simply to forgo
checking the candidate solution: making it tabu. Because the (more simple) tabu



lists are used as reference memory (only insertion and lookup is allowed), they
can be implemented efficiently as a hash set. This ensures a constant time cost
(O(1)) when a suitable hash function is used and the table is sufficiently large.
This paper will show that combining EAs with tabu lists will provide both an
effective and efficient CSP solving algorithm.

The article is organised in the following way: in section 2, the constraint
satisfaction problem is defined. Section 3 defines the proposed algorithm. The
experimental setup is explained in section 4. Section 5 discusses the results of
the experiments. Finally, the paper is concluded in section 6.

2 Constraint Satisfaction Problems

The Constraint Satisfaction Problem (CSP) is a well-known satisfiability prob-
lem that is NP-complete ([7]). Informally, the CSP is defined as a set variables

X and a set of constraints C between these variables. Variables are only assigned
values from their respective domains, denoted as D. Assigning a value to a vari-
able is called labelling a variable and a label is a variable-value pair, denoted:
〈x, d〉. The simultaneous assignment of several values to their variables is called
a compound label. A constraint is a set of compound labels, this set used to de-
termine when a constraint is violated. If a compound label is not in a constraint,
it satisfies the constraint. A compound label that violates a constraint is called
a conflict. A solution of the CSP is defined as the compound label containing all
variables in such a way that no constraint is violated. The number of distinct
variables in the compound labels of a constraint is called the arity of the con-
straint and these variables are said to be relevant to the constraint. The arity of
a CSP is the maximum arity of its constraints. In this paper we consider only
CSPs with an arity of two, called binary CSPs. All constraints of a binary CSP
have arity two.

In this paper we will use the test-set constructed in [2]. The test-set con-
sists of model F generated solvable CSP-instances ([8]) with 10 variables and
a uniform domain size of 10 values. Complexity of the instances is determined
by two commonly used complexity measures for the CSP: density (p1) and av-
erage tightness (p2), both presented as a real number between 0.0 and 1.0 in-
clusive. The mushy region is the region in the density-tightness parameter space
where the hard-to-solve CSP-instances can be found. The nine density-tightness
combinations used are 1 : (0.1, 0.9), 2 : (0.2, 0.9), 3 : (0.3, 0.8), 4 : (0.4, 0.7),
5 : (0.5, 0.7), 6 : (0.6, 0.6), 7 : (0.7, 0.5), 8 : (0.8, 0.5), and 9 : (0.9, 0.4).
For these density-tightness combinations 25 CSP-instances were selected from
a population of 1000 generated CSP instances (for selection criteria see [2])
for a total of 225 CSP-instances. The test-set can be downloaded at: http:

//www.emergentcomputing.org/csp/testset mushy.zip.



3 The Algorithm

The proposed EA is called the Simple Tabu List Evolutionary Algorithm

(STLEA) and is a hybrid between a TS algorithm and an EA. In keeping with the
simple definition of TS as “a meta-heuristic superimposed on another heuristic”
([3]), the STLEA only uses the tabu list. The tabu list is used to ensure that
the STLEA does not check a compound label twice during a run. The basic
structure of the STLEA is similar to other EAs and is shown in algorithm 1.
A population P of popsize individuals is initialised (line 2) and the compound
labels in the population are added to the tabu list (line 3). The individuals’
representation and how they are initialised are described in section 3.1, the tabu
list is described in section 3.3. The STLEA iterates for a number of generations
(line 4 to 10) until either a solution is found or the maximum number of conflict
checks allowed (maxCC) has been reached or exceeded (The stop condition in
line 4). At each iteration parents are selected from P into offspring population S

using biased linear ranking selection ([9]) with bias bias (line 5). The offspring
population creates a new population using the variation operator (line 6), further
described in section 3.4. The new offspring population is then evaluated by the
objective function (line 7), described in section 3.2. Each new individual in the
offspring population is also added to the tabu list (line 8). Finally, the survivor
selection operator selects individuals from the offspring population (S) into an
emptied population (P ) to be used for the next generation (line 9). The survivor
operator selects individuals with the best fitness value (see section 3.1) until the
new population (P ) is equal to popsize.

Algorithm 1: STLEA

1 funct STLEA(popsize,maxCC ,bias) ≡
2 P := initialise(popsize);
3 updateTabuList(P );
4 while ¬solutionFound(P ) ∨ CC < maxCC do

5 S := selectParents(P,bias);
6 S := variationOperator(S);
7 evaluate(S);
8 updateTabuList(S);
9 P := selectSurvivors(S);

10 od

3.1 Representation & Initialisation

An individual in the STLEA consists of three parts: a compound label over all
variables of the CSP used as the candidate solution; the subset of constraints of
the CSP that are violated by the compound label; and a parameter indicating
which variable was altered in the previous generation (changed variable parame-
ter). A new individual is then initialised by: uniform randomly labelling all vari-
ables in the compound label from the respective domains of each variable; adding



each constraint violated by the compound label to the set of violated constraints;
and leaving the changed variable parameter unassigned. The biggest difference
to other commonly used representations is that this representation maintains:
the actual set of violated constraints instead of the derivative number of violated
constraints; and the variable changed in the previous generation. The size of the
constraint set is used if a fitness value for the individual is needed. By numbering
the constraints of the CSP, we can store only this number as a reference to the
actual constraint.

3.2 Objective function

The objective of STLEA is to minimise the number of violated constraints, thus
finding a solution. The objective function then maintains the set of violated
constraints of an individual. The number of conflict checks needed for one fitness
evaluation is reduced by only considering the constraints relevant to the last
changed constraint. First all constraints relevant to the last changed variable
are removed from the set of violated constraints of the individual. The objective
function then checks each constraint relevant to the last changed variable of
the individual. If it is violated, the constraint is added to the set of violated
constraints of the individual.1

3.3 Simple Tabu List

The STLEA maintains a simple tabu list of compound labels implemented as
a hash set. The tabu list is used in only two ways: adding a compound label
(insertion), and checking if a compound label is in the list (lookup). There is no
need to alter or remove a compound label once it has been added to the tabu
list. New compound labels are added immediately after the new individuals
have been evaluated. Depending on the quality of the hash-function and given
adequate size of the hash table, insertion and lookup in a hash table set constant
time (O(1)).

3.4 Variation Operator

The variation operator takes a single individual to produce many children (off-
spring). The basic premise of the variation operator is simple: select a variable
from the CSP and generate children for all not previously checked values in the
domain of the selected variable. The variation operator uses the tabu list to check
whether a child has already been checked. All not previously checked children
are added to the offspring population, and the last changed variable parameter
is set to the selected variable.

If all children are in the tabu list, the variation operator iterates the procedure
with another variable selected. No variable will be selected twice in one operator

1 This objective function only works when only one variable is changed, although a
version where more than one variable is changed can be defined analogously.



invocation per individual. It is possible that after all variables have been selected,
no unchecked child was found. At this stage, the search environment around the
individual has been exhaustively searched and the search path can be terminated.
At this point the variation operator inserts a new randomly initialised individual
into the offspring population, in effect, starting a random new search path. This
is, in essence, a gradual restart strategy. The variation operator never selects
the variable selected in the previous generation, since all values for that variable
have already been checked in the previous generation of the algorithm.

The variation operator selects the variable in three stages, uniform randomly
from the set of variables:

1. relevant to the constraints violated by the individual’s compound label (first

stage variable set);
2. related to but excluding the variables in the first stage variable set by con-

straint arc (second stage variable set); and
3. that are not in the previous two sets (third stage variable set).

The first stage variable set is created by adding all relevant variables for each
constraint in the violated constraints set of the individual to a multiset. A mul-
tiset is used so that variables relevant to more than one violated constraint have
a higher chance of being selected. This provides a higher chance to satisfy more
than one constraint by a single relabelling.

The second stage variable set is a multiset of variables, excluding the variables
of the first stage variable set but including those variables that are relevant to
constraints that have a relevant variable in the first stage variable set. These
variables are said to be relevant-by-arc to a violated constraint. After all variables
from the first stage variable set have been tried, it is necessary to expand the
local-search neighbourhood. It may be useful to change the value of a relevant-
by-arc variable to another value first to escape the local-search neighbourhood.
The second stage variable set gives a higher selection chance to variables that
are relevant-by-arc to more violated constraints.

The third stage variable set includes all variable not in the previously two
variable sets. Since no preference can be established, all variables in the set have
equal probability for selection.

4 Experimental Setup

The STLEA is run on the test-set used in [2] (see section 2). Two measures are
used to assess the performance of the algorithm: the success rate (SR), and the
average number of conflict checks to solution (ACCS ). The SR will be used to
describe the effectiveness of the algorithm, the ACCS will be used to describe
the efficiency of the algorithms.

The SR of an algorithm is calculated by dividing the number of successful
runs by the total number of runs. A successful run is a run in which the algorithm
solved the CSP-instance. The SR is given as a real number between 0.0 and 1.0
but can also be expressed as a percentage. A SR of 1.0 means that all runs



were successful. The SR is the most important performance measure to compare
algorithms on, after all, an algorithm which finds more solutions should be valued
over an algorithm that does not. The accuracy of the SR measure is influenced
by the total number of runs.

The ACCS of an algorithm is calculated by averaging the number of conflict
checks needed by an algorithm over several successful runs. A conflict check is
the check made to see if a compound label is in a constraint. Unsuccessful runs
of an algorithm are discarded, and if all runs of an algorithm are unsuccessful,
the ACCS measure is undefined. The ACCS measure is a secondary measure for
comparing an algorithm and its accuracy is affected by the number of successful
runs as well as the total number of runs of an algorithm (the ratio of which is
the SR).

A efficiency performance measure has to account for the computational effort
of an algorithm. The ACCS measure uses the number of conflict checks as the
atomic measure to quantify the computational effort. The STLEA, however, also
spends computational effort on the maintenance of the tabu list. It was found
that the computational effort needed to insert and lookup compound labels in the
tabu list was negligible in comparison to the computational effort of performing
a conflict check when the CSP-instance to solve was sufficiently complex. The
computational effort needed to maintain the tabu list became relatively sub-
stantial when the average number of relevant constraints to a variable in the
CSP-instance is smaller than two. This was not the case for the CSP-instances
in the test-set.

The STLEA has relatively few parameters to fine-tune: the popsize; the
maxCC allowed; and the bias of the biased linear ranking parent selection op-
erator. We chose to select an equal number of parents for use by the variation
operator as there were individuals in the population (popsize). A bias of 1.5 for
the biased linear ranking selection operator was used because this gave the best
performance in preliminary experiments, and is also used in other studies ([1,
2]).

This leaves just the popsize and maxCC parameters to fine-tune. With EAs
for solving CSPs it is common practice to use a small population size. The
reasoning is that with a small population to maintain, more computational effort
can be spend on increasing the fitness of the individuals, following the (small
number of) search paths of which they are part. Large populations, on the other
hand, need a lot of computational effort to maintain but provide for more search
avenues to explore; in general keeping population diversity high. The trade-off,
is investing computational effort, either in following a few search paths in depth,
or in maintaining many search paths but (perhaps) following them to a lesser
depth. The STLEA, however, doesn’t seem to lend itself well to conventional
wisdom. The combination of a tabu list and a powerful local search technique
appears to address both issues at simultaneously. Since the common practice does
not seem to apply to the STLEA, only experimentation with a large number of
combinations for the popsize and maxCC parameters can provide guidelines.



The experimental setup for the proposed algorithm is then as follows: all 225
CSP-instance in the test-set the algorithm is run 10 times for a total of 2250 runs.
The popsize and maxCC parameters are varied. The popsize parameter is taken
from the following set: {10}∪{50, 100, . . . , 5000}. The maxCC is taken from the
following set: {100000, 200000, . . . , 5000000}. In total 2250·101·50 = 11, 362, 500
runs were performed.
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Fig. 1. The relationship between the population size (x-axis) and the success rate
(y-axis) of the algorithm for different maximum number of conflict checks allowed.

5 Results

The results of the experiments are summarised in figure 1. Figure 1 consists of
9 graphs, each showing the result for each density-tightness combination in the
test-set. The top row shows the results for density-tightness combinations 1 to
3, the middle row the results for density-tightness combinations 4 to 6, and the
bottom row the results for density-tightness combinations 7 to 9.

Figure 1 shows the influence of different values for maxCC on the SR for
different values of popsize. The trend for the SR is the same for all different
density-tightness combinations. The SR increases when larger values for popsize

are used. The SR drops abruptly when popsize gets too large relative to maxCC .



At the point where the algorithm achieves maximum SR, maxCC is just enough
to allow the algorithm to reach this peak but not much more. If the popsize is
increased beyond this point, the maxCC for maintaining a population of this
size are not available and the SR drops abruptly. The inner most arc seen from
the left-bottom corner of the graph (worst performance) invariably depicts the
experiments with the least maxCC . Note that the difference in complexity of the
density-tightness combinations in the test-set is also apparent by the maxCC

allowed. Density-tightness combination 1 for example is known to be easier to
solve than density-tightness combination 9, and the number of conflict checks
needed to sustain the population while reaching a success rate of 1.0 is therefore
lower for the first then for the latter. Note also the stepwise drop in SR after
the optimal SR has been reached. Each step is caused be the inability of the
algorithm to perform another generation. The slight increase in SR at each step
is cause by the maximisation of the popsize for the number of generations that
can still be performed.

SR ACCS popsize maxCC

1 1.0 2576 50 100000
2 1.0 67443 550 200000
3 1.0 313431 1650 500000
4 1.0 397636 1800 600000
5 1.0 319212 1150 500000
6 1.0 469876 1350 800000
7 1.0 692888 1750 1100000
8 1.0 774929 1700 1400000
9 1.0 442323 900 800000

Table 1. Success rate (SR) and average conflict checks to solution (ACCS) for the best
population size (popsize) and maximum conflict checks allowed (maxCC) parameters.

Table 1 shows the first parameter-combination (popsize-maxCC) for which
the SR is 1.0 for each density-tightness, with popsize minimised first and maxCC

second. There is significant difference between the parameter values for different
density-tightness combinations. CSP-instances for density-tightness combination
1 for example can be solved with popsize = 50 and maxCC = 100000 while
density-tightness combination 7 needs popsize = 1750 and maxCC = 1100000.
This reflects the difference in effort needed for solving the CSP-instances for the
different density-tightness combination more then an inherent aptitude for the
different density-tightness combinations of the algorithm.

Table 2 shows a comparison of the performance of the STLEA with the
best algorithm from [2] and some benchmark algorithms. Table 2 clearly shows
that the STLEA outperforms rSAWEA in SR and ACCS on all but density-
tightness combination 9. Especially the fact that, given a large enough population



and allowed number of conflict checks to work, the STLEA has a success rate
of 1.0 is an improvement on rSAWEA. The STLEA also compares favourable
with the HCAWR algorithm, with efficiency of the algorithm on average several
magnitudes better (except density-tightness combination 9). Compared with the
deterministic algorithms CBA and FCCDBA, however, the STLEA still has, on
average, inferior efficiency, both algorithms outperforming it by several orders of
magnitude (except for density-tightness combinations 1 and 2 for CBA). Overall,
the STLEA is more effective and efficient then the best EA published so far
but, although a step in the right direction, is still unable to beat deterministic
algorithms on efficiency.

In [2] the notion of memetic overkill was introduced as well. Memetic overkill
occurs when an algorithm for solving CSPs incorporates a heuristic so capa-
ble of finding solutions that the evolutionary components actually hamper per-
formance. Especially hybrid algorithms are susceptible to suffer from memetic
overkill. De-evolutionarising the STLEA through additional experiments (as ex-
plained in [2]) showed that the STLEA does not suffer from memetic overkill.

STLEA rSAWEA HCAWR CBA FCCDBA

SR ACCS SR ACCS SR ACCS SR ACCS SR ACCS

1 1.0 2576 1.0 9665 1.0 234242 1.0 3800605 1.0 930
2 1.0 67443 0.988 350789 1.0 1267015 1.0 335166 1.0 3913
3 1.0 313431 0.956 763903 1.0 2087947 1.0 33117 1.0 2186
4 1.0 397636 0.976 652045 1.0 2260634 1.0 42559 1.0 4772
5 1.0 319212 1.0 557026 1.0 2237419 1.0 23625 1.0 3503
6 1.0 469876 1.0 715122 1.0 2741567 1.0 44615 1.0 5287
7 1.0 692888 1.0 864249 1.0 3640630 1.0 35607 1.0 4822
8 1.0 774929 1.0 1012082 1.0 2722763 1.0 28895 1.0 5121
9 1.0 442323 1.0 408016 1.0 2465975 1.0 15248 1.0 3439

Table 2. Comparing the success rate and average conflict checks to solution of the
STLEA, the Stepwise-Adaptation-of-Weights EA with randomly initialised domain
sets (rSAWEA), Hillclimbing algorithm with Restart (HCAWR), Chronological Back-
tracking Algorithm (CBA), and Forward Checking with Conflict-Directed Backjumping
Algorithm (FCCDBA).

6 Conclusion

In this paper we introduced a hybrid Tabu Search — Evolution Algorithm for
solving the CSP, called Simple Tabu List Evolutionary Algorithm (STLEA). In
[2] it was found that EAs for solving the CSP were able to approach the effec-
tiveness of other (deterministic) algorithms but that they were still far behind in



efficiency while doing so. A reason behind this lack of efficiency is the tendency
of EAs to recheck previously checked compound labels during their search for a
solution. The rational behind the STLEA is to reduce this rechecking by using
a tabu list, effectively making previously checked compound labels tabu. The
basic structure of the STLEA resembles the basic EA structure but incorporates
a local-search technique into a single variation operator. A slightly altered rep-
resentation allows for further efficiency improvement as well. A large number of
experiments were performed for different combinations of the algorithm’s param-
eters in order to find the best parameter settings. Using these parameters, it was
found that the STLEA outperforms the best EA for solving the CSP published
so far but still has inferior efficiency to deterministic algorithms.

Future research is focussed on comparing the relative behaviour of the STLEA
to other algorithms when the complexity of the CSP-instances is increased (scale-
up experiments) and the effects on the performance of the STLEA when other
kinds of tabu lists are used.
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