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Abstract— Constraint handling is not straightforward in
evolutionary algorithms (ea) since the usual search opera-
tors, mutation and recombination, are ‘blind’ to constraints.
Nevertheless, the issue is highly relevant, for many challeng-
ing problems involve constraints. Over the last decade nu-
merous eas for solving constraint satisfaction problems (csp)
have been introduced and studied on various problems. The
diversity of approaches and the variety of problems used to
study the resulting algorithms prevents a fair and accurate
comparison of these algorithms. This paper aligns related
work by presenting a concise overview and an extensive per-
formance comparison of all these eas on a systematically
generated test suite of random binary csps. The random
problem instance generator is based on a theoretical model
that fixes deficiencies of models and respective generators
that have been formerly used in the Evolutionary Comput-
ing (ec) field.
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I. Introduction

THE main goal of the research described in this paper
is to compare a large set of evolutionary algorithms

that have been proposed to solve constraint satisfaction
problems (csp) by an extensive experimental comparison.
Historically, constraint satisfaction or constraint handling
has been approached from many angles within ec. One ap-
proach is concerned with optimisation in continuous spaces
under constraints that are often given as equalities or in-
equalities ([66], [47], [46], [45], [51], [50], [48]). Another ap-
proach focuses on discrete spaces and combinatorial prob-
lems that are either formulated as optimisation under con-
straints, or as pure constraint satisfaction problems. The
present study belongs to the latter category. For a discus-
sion on the relationships between these approaches we refer
to [15], [9].

Our main research objective naturally breaks into three
parts. First we give an overview of evolutionary algo-
rithms that have been proposed to solve constraint satisfac-
tion problems. This involves an extensive literature study.
Quite naturally, some algorithms have been developed and
studied over a period of time leading to more variants pub-
lished. Our general guideline is to take the best performing
or the most recent variant, which is typically the same, for
the present study. We describe the algorithms in a uniform
framework that facilitates identifying similarities and dif-
ferences between them. The resulting overview represents
a state-of-the-art survey on eas for csps.
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The second task is to compare all algorithms in our sur-
vey on the same test suite. This means implementing each
algorithm, generating a suitable set of problem instances
and testing all algorithms on these instances. The imple-
mentation of the algorithms is done on a single software
library1 to make sure the comparison is as fair as possible.
Our test suite consists of randomly generated binary csps.
Both the problem instance generator and the theoretical
model used in the generator are new in evolutionary com-
puting. Although this prevents a direct comparison of the
presented results to earlier published work, the benefits of
the model compensate for this advantage as it eliminates
recently discovered flaws of the other models.

The third task is to compare the best evolutionary algo-
rithms to a commonly used classical algorithm known as
forward checking with conflict-directed backjumping.

The paper is organised as follows: in Section II we elabo-
rate on constraint satisfaction problems and eas in general.
Section III presents the general framework we use to specify
an evolutionary algorithm for csps. The overview of algo-
rithms is divided into two sections. Section IV describes the
algorithms where the emphasis lies on the usage of heuris-
tics, while Section V handles those where fitness function
adaptation forms the main feature. The random problem
instance generator is discussed in Section VI. The mea-
sures used to compare algorithms, the experimental setup
and the results of the experiments are presented in Sec-
tion VII. Finally, Section VIII contains our conclusions
and recommendations for further research.

II. Constraint satisfaction problems and EAs

A constraint satisfaction problem (csp) is a pair 〈S, φ〉,
where S, the search space, is a Cartesian product of n sets
of finite domains S = D1 × · · · × Dn and φ is a formula
(Boolean function) on S. A solution of a constraint satis-
faction problem is an s ∈ S with φ(s) = true. Usually a
csp is stated as a problem of finding an instantiation of n
variables v1, . . . , vn within their finite domains D1, . . . , Dn

such that all m constraints (relations) c1, . . . , cm prescribed
for (a number of) the variables hold. The formula φ is then
the conjunction of the given constraints. One may be in-
terested in finding one solution, all solutions or in proving
that no solution exits. In the last case one may want to find
a partial solution that optimises certain criteria, for exam-
ple as many satisfied constraints as possible. We restrict
our discussion to finding one solution.

On a conceptual level, one can distinguish two types of

1JavaEa2, which can be found at http://www.cs.vu.nl/
~bcraenen/JavaEa2



handling constraints: they can either be handled indirectly
or directly [15]. This distinction is based on the following
two options for treating a constraint in an ea:

1. Transforming the constraint into an optimisation ob-
jective and have the ea pursue the objective instead of the
constraint (indirect constraint handling).
2. Leaving the constraint as it is and enforcing it in the
ea (direct constraint handling).

For the whole set of given constraints this implies three
possibilities:

a. Transforming all constraints into an optimisation objec-
tive (treating them all indirectly).
b. Enforcing all constraints in the ea (treating them all
directly).
c. Mixed direct-indirect approach transforming some of the
constraints and enforcing the rest.

Option a. belongs to the penalty-based approaches in
the common ea terminology. Option b. is not suited for
evolutionary (and other incomplete) problem solvers, be-
cause the original csp does not have an objective function
and an ea needs an objective function to optimise. The
mixed approach in option c. yields a constrained optimisa-
tion problem, where some objectives have to be optimised
and some constraints satisfied simultaneously.

A. Direct constraint handling

Treating constraints directly implies that violating them
is not reflected in the fitness function, thus there is no
bias towards chromosomes satisfying them. Therefore, the
population will not become less and less infeasible w.r.t.
these constraints. This means that we have to create and
maintain feasible chromosomes in the population. The ba-
sic problem in this case is that the regular genetic opera-
tors are blind to constraints. Mutating one or recombining
a number of feasible chromosomes might result in turn-
ing feasible parents into infeasible offspring. Typical ap-
proaches to handle constraints directly are the following:

• eliminating infeasible candidates,
• repairing infeasible candidates,
• preserving feasibility by special operators, and
• decoding, i.e., transforming the search space.

Eliminating infeasible candidates is very inefficient, and
therefore hardly applicable.

Repairing infeasible candidates requires a repair proce-
dure that modifies a given chromosome in such a way that it
will not violate constraints. This technique is thus problem
dependent but if a good repair procedure can be developed
then it works well in practice, see for instance Section 4.5
in [51] for a comparative case study in the context of con-
strained optimisation.

The preserving approach amounts to designing and ap-
plying problem specific operators that preserve the feasi-
bility of parent chromosomes. Using such operators the
search becomes quasi-unconstrained, because if the parents
are feasible their offspring remains in the feasible search
space. This is the case in sequencing applications, where
a feasible chromosome contains each label (allele) exactly

once. The well-known order-based crossovers, [75], are de-
signed to preserve this property. Note that the preserving
approach requires the creation of a feasible initial popula-
tion, which can be a hard problem on its own.

Finally, decoding can simplify the problem and allow an
efficient ea. Formally, decoding can be seen as shifting to
a search space that is different from the Cartesian product
D1×· · ·×Dn of the domains of the variables in the original
problem formulation. Elements of the new search space
S′ serve as inputs for a decoding procedure that creates
feasible solutions, and it is assumed that a free (modulo
preserving operators) search can be performed in S′ by an
ea. For a nice illustration we refer again to Section 4.5 in
[51].

Advantages of direct constraint handling are:

• might perform very well, and
• might naturally accommodate existing heuristics.

Because the technique of direct constraint handling is usu-
ally problem dependent it has some disadvantages:

• designing a method for a given problem may be difficult,
and
• using a given method might be computationally expen-
sive.

B. Indirect constraint handling

With indirect constraint handling we incorporate con-
straints into a fitness function f in such a way that the
optimum of f implies that these constraints are satisfied.
The ea can then use its optimisation power to find a solu-
tion. This is a problem transformation were, formally, we
relax φ and introduce fitness function f . Because an opti-
mal solution with respect to the fitness function implies a
solution to the csp, we have an injective relation between
the set of solutions of the transformed problem and the set
of solutions of the csp. The optimisation objectives replac-
ing the constraints are traditionally viewed as penalties for
constraint violation, hence to be minimised [64]. There are
two basic types of penalties:

1. penalty for violated constraints, and
2. penalty for wrongly instantiated variables.

Formally, let us assume that we have constraints ci

(i = {1, . . . , m}) and variables vj (j = {1, . . . , n}). Let
Cj be the set of constraints involving variable vj . Then
the penalties relative to the two options above described
can be expressed as follows:

1. f1(s) =
∑m

i=1 wi × χ(s, ci), where

χ(s, ci) =

{

1 if s violates ci

0 otherwise

2. f2(s) =
∑n

j=1 wj × χ(s, Cj), where

χ(s, Cj) =

{

1 if s violates at least one c ∈ Cj

0 otherwise

where the wi and wj are weights that correspond to a con-
straint and variable respectively. These will be important
later on, for now we assume all these weights equal to one.



Obviously, for each of the above functions f ∈ {f1, f2}
and for each s ∈ S we have that φ(s) = true if and only if
f(s) = 0.

Example 1: In the graph 3-colouring problem the nodes
of a given graph G = (N, E), E ⊆ N × N , have to be
coloured by three colours in such a way that no neigh-
bouring nodes, i.e., nodes connected by an edge, have the
same colour. This problem can be formalised by means of
a csp with n = |N | variables, each with the same domain
D = {1, 2, 3}. Furthermore, we have m = |E| constraints,
one for each edge e = (k, l) ∈ E, with ce(s) = true if and
only if sk 6= sl. Then the corresponding csp is 〈S, φ〉, where
S = Dn and φ(s) =

∧

e∈E ce. Using the constraint oriented
penalty function f1 with wi = 1 for all i = {1, . . . , m} we
count the incorrect edges that connect two nodes with the
same colour. The variable oriented penalty function f2

with wi = 1 for all i = {1, . . . , m} amounts to counting
the incorrect nodes that have a neighbour with the same
colour.

Advantages of indirect constraint handling are:
• general (e.g., f1, f2 are problem independent penalty
functions),
• reduces problem to ‘simple’ optimisation, and
• allows user preferences by weights.
Disadvantages of indirect constraint handling are:
• loss of information by packing everything in a single num-
ber, and
• in case of constrained optimisation (thus not pure csp as
we handle here) f1, f2 are reported to be weak [59].

There are other classification schemes of constraint han-
dling techniques in ec. For instance, the categorisation in
[49], distinguishes pro-choice and pro-life techniques, where
pro-choice encompasses eliminating, decoding, and preserv-
ing, while pro-life covers penalty based and repairing ap-
proaches.

III. Describing EAs for CSPs

In order to compare the different algorithms, it is useful
to have a general template or framework to describe an ea
for solving csps. There are existing frameworks for describ-
ing heuristic and evolutionary search techniques [16], [36]
that mostly try to be as general as possible. Here we intro-
duce a new one that is tailored for specifying csp solving
eas. Our framework contains the standard components of
evolutionary algorithms enriched with the specific features
the csp solving eas exhibit. The standard components of
this framework are as follows:
• evolutionary model (generational, steady state)
• representation
• fitness function
• variation operators
– mutation
– recombination

• selection procedures
– parent selection
– survivor selection

• initialisation procedure
• stop condition

Combining these components we can define a general ea
into the following pseudo code algorithm:

population = initialisation();

calculate_fitness(population);
while (!stop-condition)

{
list_of_parents = select_parents(population);
list_of_children = crossover(list_of_parents);

mutate(list_of_children);
calculate_fitness(list_of_children);
if (model is generational)

population = list_of_children;
if (model is steady_state)

population = select_survivors(
concat(list_of_parents, list_of_children));

}

In addition to this framework we also mention the way
the algorithms handle constraints as explained in Sec-
tion II. Practically all csp solving eas from the literature
use some kind of runtime adjustment of the fitness func-
tion (e.g., increasing the penalties for constraint violation)
or heuristics (e.g., mutation operators that use heuristics
to mutate specific variables), and sometimes both. This
means that the standard components of the framework
should be extended with the following two elements:

• fitness function adjustment,
• use of heuristics.

Using this framework we have to define two basic ap-
proaches for solving csps with an ea. The first basic ap-
proach called the integer-based Standard ea, is used as a
benchmark for all algorithms. These algorithms should at
least outperform this ea. The integer-based standard ea
uses a pure indirect constraint handling method like func-
tion f1 presented in Section II. The integer-based Stan-
dard ea uses as a representation a string s where element
si corresponds to a value for variable i. We call this the
standard representation. The characteristics of the integer-
based standard ea are presented in Table I.

However, one algorithm in our survey (saw) uses a per-
mutation representation with a corresponding decoder (see
Section V-C for more details) and therefore needs an-
other benchmark algorithm including these peculiarities.
The characteristics of this benchmark, called permutation-
based Standard ea are presented in Table II and uses an
f2 fitness function.

Both benchmark algorithms use a population size of 10.
We shall provide similar tables for all algorithms studied

in this paper. As all tables follow the framework with ex-
tensions, they offer a concise description of the components
of each algorithm. Specific algorithm parameter values are
discussed in the corresponding sections, the crossover rate
being pc = 1 by default.

Two components of the framework are not represented
in the tables as they are the same for all algorithms in
this paper. The first is the stop condition. All algorithms
terminate on two conditions: first, whenever a solution to
the csp is found and second when the ea has performed
100,000 fitness evaluations. The second component not in
the table is the initialisation procedure. All first gener-
ation individuals are initialised (uniform) randomly based



TABLE I

Main features of the integer-based Standard ea for solving

csps

Model Steady state
Representation Standard
Fitness function f1 with wi = 1
Recombination
operator

One-point crossover

Mutation
operator

Select for each si with a
chance of 0.1 uniform
randomly a new value
(random mutation)

Parent selection Roulette wheel on 1/f1

Survivor selection Replace worst
Constraint handling Pure indirect
Fitness adjustment None
Use of heuristics None
Extra None

TABLE II

Main features of the permutation-based Standard ea for

solving cspS

Model Steady state
Representation Permutation of variables
Fitness function f2 with wi = 1
Recombination
operator

None

Mutation operator Swap with mutation rate = 1.0
Parent selection Roulette wheel on 1/f2

Survivor selection Replace worst
Constraint handling Mixed direct-indirect
Fitness adjustment None
Use of heuristics None

Extra
Decoder that obtains a
consistent partial
instantiation cf. Section V-C

on their respective representation (e.g., in the standard rep-
resentation, the string s is initialised with n values uniform
randomly chosen from each variable’s domain).

Together we describe and test 11 eas in this paper. They
are listed in Table III for a convenient overview.

IV. Methods with emphasis on heuristics

Here we consider four approaches that share the com-
mon feature of exploiting the structure of the constraints
in order to design an ea for solving binary csps over finite
domains.

A. Heuristic Genetic Operators (H-ga)

In [21], [22], Eiben et al. propose to incorporate existing
csp heuristics into genetic operators. In [8] a study on the
performance of these heuristic-based operators when solv-
ing binary csps was published. Two heuristic-based genetic
operators are specified: an asexual operator that trans-

TABLE III

Evolutionary algorithms used in the experimental

comparisons

Algorithm Author Main references

arc-ga Riff Rojas [60], [61], [62]
ccs Paredis [53], [54]
coe-h ga Handa et al. [29], [28]
Glass-Box Marchiori [43]
H-ga (3 variants) Eiben et al. [21], [22]
mid Dozier et al. [12], [6], [13]
saw Eiben et al. [3], [18], [20]
Standard ea int. n.a. n.a.
Standard ea perm. n.a. n.a.

forms one individual into a new one and a multi-parent
operator that generates one offspring using a number of
parents.

The asexual heuristic based genetic operator selects a
number of variables in a given individual, and then chooses
a new value for each of these variables. Both steps are
guided by a heuristic: the selected variables are those in-
volved in the largest number of violated constraints, and
the new values for those variables are the values which max-
imise the number of constraints that become satisfied.

The basic mechanism of the multi-parent heuristic
crossover operator is scanning: for each position, the values
of the variables of the parents in that position are used to
determine the value of the variable in that position in the
child. The selection of the value is done using the heuristic
employed in the asexual operator. The difference between
the multi-parent heuristic operator and the asexual heuris-
tic operator is that the multi-parent heuristic operator does
not evaluate all possible values but only those found in
the parents. Therefore multi-parent crossover is applied to
more parents (here 5) and produces a single child.

The main features of three eas based on this approach,
called H-ga.1, H-ga.2, and H-ga.3, are illustrated in Ta-
ble IV. In the H-ga.1 version the asexual heuristic genetic
operator serves as the main search operator assisted by
random mutation. In H-ga.3 it accompanies the multi-
parent crossover in a role which is normally filled in by
mutation. The random mutation operator has a mutation
rate of 0.1, and apart from H-ga.3, two parents were se-
lected for crossover and mutation. There was a population
size of 10.

B. Knowledge Based Fitness and Genetic Operators (arc-
ga)

In [60], [61], [62] M.-C. Riff Rojas introduced an ea for
solving csps that uses information about the constraint
network in the fitness function and in the genetic operators
(crossover and mutation). The fitness function is based on
the notion of the error evaluation of a constraint. The error
evaluation of a constraint is the number of variables of the
constraint plus the number of variables that are connected



TABLE IV

Main features of three implemented versions of H-ga

Version 1 Version 2 Version 3

Model Steady state
Representation Standard
Fitness function f1 with wi = 1

Recombination
operator

Asexual Multi- Multi-
heuristic parent parent
operator heuristic heuristic

crossover crossover

Mutation
operator

Random Random Asexual
mutation mutation heuristic

operator
Parent selection Roulette wheel on 1/f1

Survivor selection Replace worst
Constraint handling Mixed direct-indirect
Fitness
adjustment

None

Use of heuristics Variation operators
Extra None

to these variables in the csp network. The fitness function,
called arc-fitness, is the sum of error evaluations of all the
violated constraints in an individual. The mutation opera-
tor, called arc-mutation, selects a variable of an individual
randomly and assigns to that variable the value that min-
imises the sum of the error-evaluations of the constraints
involving that variable. The crossover operator, called con-
straint dynamic adaptive arc-crossover, selects two parents
randomly and builds offspring by means of the following
iterative procedure over all the constraints of the consid-
ered csp. An ordering of the constraint is calculated on
whether one or both are violated and the error evaluation
of the violated constraint. For the two variables of a se-
lected (binary) constraint c, say vi, vj , the following cases
are distinguished.

1. If none of the two variables are instantiated in the off-
spring under construction then:
• If none of the parents satisfies c, then a pair of values

for vi, vj from the parents is selected which minimises the
sum of the error evaluations of the constraints containing
vi or vj whose other variables are already instantiated in
the offspring.
• If there is one parent which satisfies c, then that parent

supplies the values for the child.
• If both parents satisfy c, then the parent which has the

higher fitness provides its values for vi, vj .
2. If only one variable, say vi, is not instantiated in the
offspring under construction, then the value for vi is se-
lected from the parent minimising the sum of the error-
evaluations of the constraints involving vi.
3. If both variables are instantiated in the offspring un-
der construction, then the next constraint (in the ordering
described above) is selected.

In addition to improved mutation and crossover operators
and an adjusted fitness function, M.-C. Riff Rojas also de-

fines an adjusted parent selection called arc-selection which
divides the population into three regions. The first region
includes the individuals that are better or equal to the av-
erage fitness mean of the population. The second region
includes the individuals that have a fitness of at least the
mean plus the standard deviation of the mean fitness of
the population. The third and last region includes the re-
maining individuals. Half of the parents selected by arc-
selection are randomly selected from the first region, 0.35
of the parents are selection from the second region and the
remainder are selected from the third region. The main
features of a ga based on this approach are summarised
in Table V. Again, arc-ga had a population size of 10, a
mutation rate of 0.1 and had two parents selected for the
genetic operators.

TABLE V

Main features of arc-ga

Model Steady state
Representation Standard
Fitness function Arc-fitness function
Recombination operator Arc-crossover operator
Mutation operator Arc-mutation operator
Parent selection Arc-selection
Survivor selection Replace worst
Constraint handling Mixed direct-indirect
Fitness adjustment None

Use of heuristics
In both operators
and the fitness function

Extra None

C. Glass Box Approach (Glass-Box)

E. Marchiori introduced and investigated eas for solv-
ing csps based on pre- and post-processing techniques [43],
[44], [10]. Here we study the variant form [43], [73] that
transforms constraints into a canonical form in such a way
that that there is only one single (type of) primitive con-
straint, we call this algorithm Glass-Box. This approach
is used in constraint programming, where csps are given
in implicit form by means of formulas of a given specifica-
tion language. For instance, for the N-Queens Problem, we
have the well known formulation in terms of the following
constraints:
• vi 6= vj for all i 6= j (two queens cannot be on the same
row).
• abs(vi − vj) 6= abs(i− j) for all i 6= j (two queens cannot
be on the same diagonal).
By decomposing complex constraints into primitive ones,
the resulting constraints have the same granularity and
therefore the same intrinsic difficulty. This rewriting of
constraints, called constraint processing, is done in two
steps: elimination of functional constraints (as in GENOCOP

[51]) and decomposition of the csp into primitive con-
straints. The choice of primitive constraints depends on
the specification language. The primitive constraints cho-
sen in the examples considered in [43], the N-Queens Prob-



lem and the Five Houses Puzzle, are linear inequalities of
the form: α · pi − β · pj 6= γ were pi and pj are the values
of variables vi and vk. When all constraints are reduced to
the same form, a single probabilistic repair rule is applied,
called dependency propagation. The repair rule used in the
examples is of the form:

if α · pi − β · pj = γ then change pi or pj

The violated constraints are processed in random order.
Repairing a violated constraint can result in the production
of new violated constraints, which will not be repaired.
Thus at the end of the repairing process the chromosome
will not in general be a solution. Note that this kind of
ea is designed under the implicit assumption that csps
are given in implicit form by means of formulas in some
specification language.

A simple heuristic can be used in the repair rule by select-
ing the variable whose value has to be changed as the one
which occurs in the largest number of constraints, and by
setting its value to a different value in the variable domain.
The main features of this ea are summarised in Table VI,
it selected two parents which were all recombined and mu-
tated with a mutation rate of 0.1. We used a population
size of 10.

TABLE VI

Main features of Glass-Box ga

Model Steady state
Representation Standard
Fitness function f1 with wi = 1
Recombination
operator

One-point crossover operator

Mutation operator Random mutation
Parent selection Roulette wheel on 1/f1

Survivor selection Replace worst
Constraint Handling Mixed direct-indirect
Fitness adjustment None
Use of heuristics In the repair operator
Extra Repair operator

D. Coevolutionary Approach with Heuristics (coe-h ga)

In [29], [28] Handa et al.. formulate a coevolutionary
algorithm where the host population is parasited on by
a population of schemata. We call this algorithm coe-h
ga. Schemata in this algorithm are individuals where a
portion of variables in the individual has values while all
other variables have ‘don’t care’ symbols represented by
asterisks. The host fitness function, although based on the
standard number of violated constraints, is normalised to a
range between zero and one by subtracting the number of
violated constraints from the total number of constraints
and dividing the result by the total number of constraints.
Therefore, the objective of the evolutionary algorithm is
not to minimise the fitness function but to maximise it to
one. The host crossover and host mutation operators are

the standard one-point crossover and the random mutation
operator.

As the parasite population in coe-h ga consists of
schemata, a special fitness function is needed. The fitness
of a schemata in the parasite population is measured by the
total improvement the schema has on a portion of the host
population. By iteratively superpositioning all schemata
in the parasite population on a number of individuals in
the host population and adding the improvements for each
superpositioning, each schema is evaluated. Superposition-
ing a parasite individual over a host individual is nothing
more than replacing the values of the host individual with
the non-‘don’t care’ values of the parasite individual. Al-
though a crossover operator for the parasite population can
be straightforward (in our case, we choose the one-point
crossover), the mutation operator has to be adjusted so
that it will sometimes produce a ‘don’t care’ symbol in the
schema, i.e., asterisk. Thus, next to the mutation rate of
the operator an asterisk rate is also necessary. The para-
site population also has a repair operator that fills in the
most constrained variables with their best values. Vari-
ables with ‘don’t care’ symbols are left untouched. This
insures that all schemata have the best possible values in
their non-asterisk positions. This is done by ordering the
non-asterisk positions first and then changing their values.

Interaction between the host population and parasite
population is based on two mechanisms:

• Superposition. This interaction is directed from the host
population to the parasite population. This interaction
provides the individuals in the parasite population with
their fitness function and is described earlier.
• Transcription. This interaction is directed from the par-
asite population to the host population and is the actual
genetic transmission. Transcription is done after the host
population has been evaluated during the evaluation of the
parasite population as coe-h ga sequentially performs first
a generation of the host population and then a generation of
the parasite population. Transcription works by randomly
choosing a number of individuals based on a transcription
rate and then replacing the values stored in these individu-
als with the non-‘don’t care’ values in the schemata of the
parasite individuals.

Because of two parallel evolutionary processes, coe-h
ga has a larger number of parameters than most eas. Its
host population size was 20 with a parasite population size
of 5. Every generation, 20 new host individuals and 5 new
parasite individuals were created with a tournament size
of 2. Both populations were all recombined and mutated
with a host mutation rate of 0.05 and a parasite mutation
rate of 0.1. Upon creation of the parasite individuals, each
variable had a 0.9 probability of being an asterisk. During
the evolution, parasite individuals were super positioned
on 2 host individuals and had a transcription rate of 0.8.
The main features of coe-h ga are summarised in VII.

V. Methods with emphasis on adaptive features

In this section we describe methods that use a fitness
function that is adapted during the search procedure in



TABLE VII

Main features of coe-h ga

Host Parasite

Model Steady state
Representation Standard Schemata

Fitness function
Portion of Improvement
constraints of a selection of
validated host individuals

Recombination
operator

One-point crossover operator

Mutation
operator

Random Special
mutation random

mutation
Parent selection Tournament Roulette wheel
Survivor selection Replace worst
Constraint handling Mixed direct-indirect
Fitness adjustment None
Use of
heuristics

In the schemata and
the parasite operator

Extra None

order to bias the search towards more difficult constraints.

A. The Coevolutionary Approach (ccs)

This approach has been tested by Paredis on different
problems, such as neural net learning [54], constraint sat-
isfaction [53], [54] and searching for cellular automata that
solve the density classification task [55]. Furthermore, re-
sults on the performance of the Coevolutionary Approach
(ccs) when facing the task of solving binary csps are re-
ported in [19], [32]. In the coevolutionary approach for
csps two populations evolve according to a predator-prey
model: a population of candidate solutions and a popu-
lation of constraints. The size of the latter population is
equal to the amount of constraints present in the csp. The
size of the population of candidate solutions is set to 100.
The selection pressure on individuals of one population de-
pends on the fitness of the members of the other popula-
tion. The fitness of an individual in either of these popu-
lations is based on a history of encounters. An encounter
means that a constraint from the constraints population
is matched with a chromosome from the solutions popula-
tion. If the constraint is not violated by the chromosome,
the individual from the solutions population gets a point.
Otherwise, the constraint gets a point. The fitness of an in-
dividual is the number of points it has obtained in the last
25 encounters. In this way, individuals in the constraints
population which have been often violated by members of
the solutions population have higher fitness. This forces the
solutions to concentrate on more difficult constraints. At
every generation of the ea, 20 encounters are executed by
repeatedly selecting pairs of individuals from the popula-
tions, biasing the selection towards fitter individuals using
linear ranking with a bias of 1.5 [74]. Clearly, mutation
and crossover are only applied to the solutions population.
Parents for crossover are selected using linear ranked selec-

tion [74]. Crossover is performed using Two-Point Surro-
gate Crossover [74], [5], after which standard mutation is
applied with a mutation probability of 0.1. The crossover
operator used here is designed to minimise the chance of
generating offspring that looks similar. The main features
of this ea are summarised in Table VIII.

TABLE VIII

Main features of the coevolutionary approach (ccs)

Model Steady state
Representation Standard

Fitness function
Points scored during
the last 25 encounters

Recombination
operator

Two-point reduced surrogate
parents crossover

Mutation operator Random mutation
Parent selection Linear ranked bias
Survivor selection Replace worst
Constraint handling Pure indirect
Fitness adjustment In the dynamics of the

two populations
Use of heuristics None
Extra None

B. Heuristic-Based Microgenetic Method (mid)

In the approach proposed by Dozier et al. in [12], and
further refined and applied in [6], [13], [72], information
about the constraints is incorporated both in the genetic
operators and in the fitness function. In the Microgenetic
Iterative Descent (mid) Algorithm the fitness function is
adaptive and employs Morris’ Breakout Creating Mecha-
nism [52] to escape from local optima. At each generation
an offspring is created by either applying the crossover on
two individuals or by applying the mutation operator on
one individual. Both operators create one offspring. The
name “Microgenetic” stems from the fact that we use a
small population size. Here we have used a population size
of 6.

The representation of a candidate solution consists of a
n alleles, a pivot and a fitness value. Each allele consists of
four elements, the variable, its assigned value, the number
of constraint violations this variable is involved in and an
h-value. This h-value is used in the process of choosing the
pivot variable of an individual initialised as zero.

To create new candidate solutions one of two variation
operators is used, which is determined by an adaptive
scheme. At the start both operators have an equal chance
of being applied. When an operator is applied we monitor
if this has resulted in better offspring. If this is the case
we increase the chance of that operator being applied by
adding the amount of improvement, i.e., the difference in
the fitness between parent and offspring, to the correspond-
ing operator. We call this value the accumulated awards
of an operator. The chance that an operator is selected
is its accumulated award divided by the total accumulated



awards of both operators. Next we describe the two varia-
tion operators.

Multiple-point Heuristic Crossover (mhm) is used [14]
to recombine two candidate solutions into one new candi-
date solution. This crossover copies every value from the
first parent that is not involved in constraint violations
to the offspring. Then for each value that is involved in
constraint violations it performs a multiple-point crossover
with a chance of 0.5 ∗ (1 + 1/constraint violations(value)),
otherwise it copies from the first parent. The multiple-
point crossover operator chooses uniform randomly a value
from a domain defined by the two parents. Generally the
values of each domain are numbers, therefore we take all
the numbers that lie in the range of the values of the two
parent’s values a and b. For example, lets say a = 9 and
b = 3 then we should uniform randomly select a number
from the set {3, 4, 5, 6, 7, 8, 9}.

When Single-point Heuristic Mutation (shm) is selected
as the variation operator, the parent copies itself to produce
an offspring and then one allele of that offspring is mutated.
The pivot of the offspring points to the variable that will
undergo the mutation. This variable is assigned a value
chosen randomly from its domain. However this domain is
changed during the run as described in the last ingredient
on families.

The offspring that is created by shm is then compared
with its parent or parents. If the fitness of the parent is
better than or equal to that of the offspring, the h-value
of the corresponding pivot allele of the offspring is decre-
mented by one. And the individual is inspected to see if the
pivot should point to another allele. This is done by com-
puting the so-called s-value of each allele, which is defined
as the sum of the number of constraint violations of this
allele and its h-value. The allele with the highest s-value
will be appointed as the new pivot. If there is a tie be-
tween the current pivot and one or more other alleles, the
current allele stays pivot. Ties between other alleles are
broken randomly. If the fitness of the parent is not better
than that of the offspring, the h-values and thus the pivot
is left unchanged.

Using this method of inheriting information for choos-
ing which allele is to be mutated provides two interesting
mechanisms for the algorithm to exploit. First of all, a con-
secutive line of successful offspring can optimise the number
of constraint violations related to one variable. Secondly,
it allows the algorithm to switch to other variables when
this optimising stops or when other variables have higher
s-values .

On the other hand, the method also poses a problem, af-
ter a while it is possible that the h-value causes the system
to choose an allele that is not involved in any constraint
violations. This happens when the h-values of the vari-
ables that are involved in constraint violations get lower
than the actual number of constraint violations. If the al-
gorithm would reach this state, no further progress will be
made. In order to prevent this from happening, all the in-
dividual’s h-values will be reset to zero using a probability

function rx for an individual x:

rx =
1

|Ox| + 2

where Ox is the amount of variables involved in constraint
violations caused by individual x.

Roughly, the fitness function of a chromosome is deter-
mined by adding a suitable penalty term to the number of
constraint violations the chromosome is involved in. The
penalty term is the sum of the weights of all the break-
outs2 whose values occur in the chromosome. The set of
breakouts is initially empty and it is modified during the
execution by increasing the weights of breakouts and by
adding new breakouts according to the technique used in
the Iterative Descent Method [52].

An additional mechanism that used the concept of fami-
lies has been added to the standard list of ingredients. This
mechanism should force the mutation operator into a more
structured way of exploring the search space. The family
mechanism assigns every individual to one family. Each
family has a domain for the pivot variable from which the
mutation operator may choose if a new value needs to be
assigned to the pivot variable of a family member. When
a family first starts this domain is equal to the domain of
the corresponding variable in the problem. However, when
a value is assigned to a family member, it is removed from
the family’s domain thereby preventing future relatives to
reuse it. When such a domain becomes empty a new pivot
variable is chosen an at the same time a new family is
founded, again with a new domain. The current individual
becomes the first member of this family.

TABLE IX

Main features of heuristic-based microgenetic algorithm

Model Steady state

Representation
Standard with
additional bookkeeping

Fitness function
f1 with wi = 1
plus number of breakouts

Recombination
operator

Multi-point Heuristic Crossover

Mutation operator Single-point Heuristic Mutation
Parent selection Linear ranked bias

Survivor selection
Replace parents when
offspring is better

Constraint handling Mixed direct-indirect
Fitness adjustment Breakout mechanism
Use of heuristics In the genetic operators
Extra Families

C. Stepwise Adaptation of Weights (saw)

The Stepwise Adaptation of Weights (saw) mechanism
has been introduced by Eiben and van der Hauw [17], [31]

2A breakout consists of two parts: a pair of values that violates a
constraint; and a weight associated to that pair



as an improved version of the weight adaptation mechanism
of Eiben, Raué and Ruttkay [23], [24]. The saw-ing ea
has been studied in several comparisons and often proved
to be a robust technique for solving specific csps [3], [18],
[20]. A comprehensive study of different parameters and
genetic operators can be found in [7]. In a recent study saw
is surpassed by other techniques for specific suites of sat
problem instances [27]. The basic idea behind the saw-ing
mechanism is that constraints that are not satisfied (f1) or
variables causing constraint violations (f2) after a certain
number of steps must be hard, thus must be given a high
weight (penalty). The realization of this idea constitutes of
initialising the weights at 1 and re-setting them by adding
a value ∆w = 1 after a certain period. Here this period
is set to 25 evaluations. An adjustment is only applied to
those constraints that are violated by the best individual
of the given population. Earlier studies indicated the good
performance of a simple (1+1) scheme, using a singleton
population and exclusively mutation to create offspring.
Here we opt for a population size of 10, while keeping the
steady-state approach. The representation is based on a
permutation of the problem variables; a permutation is
transformed to a partial instantiation by a simple decoder
that considers the variables in the order they occur in the
chromosome and assigns the first possible domain value to
that variable.3 If no value is possible without introducing
a constraint violation, the variable is left uninstantiated.
Uninstantiated variables are, then, penalised and the fit-
ness of the chromosome (a permutation) is the total of these
penalties. Let us note that penalising uninstantiated vari-
ables may be a much rougher estimation of solution quality
than penalising violated constraints. However, this option
is shown to work well for graph k-colouring in [18].

We include a second benchmark algorithm called Stan-
dard ea permutation-based. We have done this to study
the effect of the saw-ing mechanism. The characteristics of
this benchmark algorithm have been presented in Table II.

VI. The test suite: random binary CSPs

We compare the given eas on a well-defined problem
class, the class of binary csps. The restriction to binary
problems is only formal, since any csp can be equivalently
transformed to a binary csp [63], although in practice care
has to be taken when one performs such a transformation
as the transformation may have implications on the way
an algorithm solves both the original and the transformed
problem [4]. Here we leave out such considerations as we
will be generating instances of binary csps directly.

To obtain problem instances of this class we use a genera-
tor. Using a problem instance generator has the advantage
that many problem instances can be produced, and this
can be done in a systematic manner. This supports gen-
eralisable results. Much of the existing knowledge on ec
and csps has been created by using particular problems
and specific instances, or generators that have been shown
to have serious deficiencies. The model we use here is new

3Although the SAW mechanism itself is pure indirect, this decoder
introduces direct constraint handling.

TABLE X

Main features of the saw-ing algorithm

Model Steady state
Representation Permutation of variables
Fitness function f2 with saw
Recombination
operator

None

Mutation operator Swap
Parent selection Linear ranked bias
Survivor selection Replace worst
Constraint handling Mixed direct-indirect
Fitness
adjustment

Updating of weights
with best individual

Use of heuristics None

Extra
Decoder that obtains a
consistent partial
instantiation

in the ec field. This prevents a direct comparison of our
results and those from the past. Yet, we choose for this ap-
proach as we intend to inspire better funded experimental
research in the future. To this end we do not only provide
the code of the generator called RandomCsp4 [35], [33], we
also made the set of instances we used available on the Web
[56].

Over the last decades there have been various problem
instance generators proposed for the class of binary csps
based on theoretical models. These have in common that
the space of instances is parameterised and several claims
have been made about the hardness of instances obtained
for given parameter values. The commonly used parame-
ters are n, m, D, and k, where n is the number of variables,
m is the number of constraints, D is the number of values
in each domain and k is the arity of each constraint. A
general framework for these models, presented in [57], [71]
works in two steps:

Step 1: Either (i) each one of the
(

n

2

)

edges is selected to
be in G independently of all other edges with probability p1

(constraint density), or (ii) we uniformly select a random
set of edges of size p1

(

n
2

)

.
Step 2: Either (i) for every edge of G each one of the

D2 edges in C is selected with probability p2 (constraint
tightness), or (ii) for every edge of G we uniformly select a
random set of edges in C of size p2 D2

Combining the options for the two sets, we get four models
for generating random csps, called models A to D as in
[71]. Recently it has been shown that models A to D are
unsuitable for the study of phase transition and threshold
phenomena such as csps [1] because the instances they gen-
erate have almost certainly no solutions due to the appear-
ance of ‘flawed’ values, i.e., values that are incompatible
with all the values of some other variable. A number of
experimental studies, as reported in [42] have avoided this
pitfall, but many others did not.

4RandomCsp is available at http://freshmeat.net/projects/
randomcsp



Achlioptas at al. [1] have proposed an alternative model
for generating random csp instances (Model E), which does
not suffer from the deficiencies underlying the other mod-
els. This model resembles the model used for generating
random Boolean formulas for the satisfiability problem and
the constraints it generates are similar to the ‘nogoods’ pro-
posed by Williams and Hogg ([76]). This model is defined
as:

Definition 1: CΠ is a random n-partite graph with D
vertices in each part constructed by uniformly, indepen-
dently and with repetitions selecting m = p

(

n

k

)

Dk hyper-

edges out of the
(

n

k

)

Dk possible ones, with k = 2 for binary
constraint networks. Also, let r = m/n denote the ratio of
the selected edges to the number of variables.
Such a model can be fully specified as E(n, m, D, k), where
the meaning of the parameters is as given above. Informally
one could say that Model E works by choosing uniformly,
independently and with repetitions conflicts between two
values of two different variables. The paper continues by
stating that for a random instance Π generated using Model
E, if we have r < 1/2, Π almost certainly has a solution
[1] and it is possible to bound the underconstrained and
overconstrained regions.

It is known for Model A to D, that, when either p1 or
p2 is varied, the generated csp would exhibit a so called
phase transition, where problems change from being rela-
tively easy to solve to being easy to prove unsolvable. The
region generally indicated as the mushy region is where
the probability that a problem is soluble changes from al-
most zero to almost one. In the mushy region, problems
are in general difficult to solve or difficult to prove unsolv-
able and therefore of particular interest when comparing
different algorithms for efficiency. In [1] Achlioptas et al.
show that Model E also exhibits a phase transition when
the variable p is changed and they give bounding formulas
for the mushy region. In this paper, all csp instances are
generated using Model E in such a way that the higher p
the more difficult, on average, problem instances will be.
Moreover, we make sure that the highest values of p overlap
the mushy region.

VII. Experimental comparison

In this section we elaborate on the measures we use, the
experimental setup, and finally, we present the experimen-
tal results.

A. Measures

We compare algorithms with respect to their effective-
ness and their efficiency. Effectiveness is measured by the
success rate (sr) and the mean error at termination (me).
The success rate is the percentage of runs that find a solu-
tion. To this end we reiterate that all instances we use for
testing are solvable, this makes sr values of 100% possible.

The error at termination is defined for a single run as
the number of constraints that are not satisfied by the best
candidate solution in the population when the run termi-
nates. For any given set of runs of the mean error (me)
is the average of these error values. This measure provides

information on the quality of partial solutions. Depending
on the problem context, this can be a useful way of compar-
ing algorithms that have equal sr values lower than 100%.
However, we must be careful in our interpretation of the
me. During a run of an evolutionary algorithm we may
encounter many different solutions, some of which have an
equal number of constraints violated. Although most fit-
ness functions used by the algorithms use as a main com-
ponent the number of violated constraints, this does not
necessarily mean that for the continuation of the search one
candidate is better than another. For example, it might be
that two individuals differ in the amount of constraints vi-
olations, but that the individual with the smallest amount
is much more difficult to change into a solution because of
having to change many variable instantiations.

To compare efficiency of algorithms a straightforward
measure is time complexity, i.e., the time an algorithm
needs to complete a task. But this measure has some dis-
advantages. It highly depends on the hardware and the
implementation of the algorithm itself. Furthermore, other
less obvious things like compiler optimisations can disturb
the measure. A more robust measure is therefore used, one
which does not depend on external factors. That measure
is computational complexity, measuring algorithm speed by
counting the number of basic operations. This of course
leads to the question: “What are basic operations?”. In
search algorithms, like eas, the basic operation is often de-
fined as the evaluation (therefore also the creation) of a
new candidate solution. This definition is not perfect, be-
cause the creation and evaluation of a candidate solution
can imply more effort in one ea than in another, e.g., by
needing more random numbers, or expensive repair heuris-
tics before fitness evaluation. It does not show work spent
elsewhere, e.g., on selection and population update, either.
But the advantages outweigh the disadvantages: it is inde-
pendent of implementation details and is universal, i.e., it
can be interpreted for all eas and with slight modifications
for other search methods too.

In our experiments we use the average number of evalu-
ations to solution (aes) to measure efficiency. For a given
algorithm it is defined as the average length of successful
runs. Consequently, when the sr = 0, the aes is unde-
fined. Note also, that when the number of successful runs
is relatively low, the aes is not statistically reliable. It
is therefore important to consider the sr and aes values
together to make a clear interpretation of the results.

The use of the average number of evaluations to a so-
lution assumes that every evolutionary algorithm uses the
same computational time to do one evaluation. Unfortu-
nately this might not always be the case as some algorithms
perform a lot of hidden work. To test this we need to
measure an atomic operation that is performed by all algo-
rithms and which takes up most of the computational time.
Here we choose conflict checks, where a conflict check is de-
fined as checking whether the value assignment of a pair of
variables is allowed. Thus we measure the average number
of conflict checks an evolutionary algorithm performs per
evaluation. This is calculated by taking the total number



of conflict checks over a whole run and dividing this by the
total number of evaluations of that run. We use this to
determine the average amount of work performed by the
algorithms per fitness evaluation.

Furthermore, we may use conflict checks to measure the
average number of conflict checks per run. This enables
us to make a comparison with a complete and sound al-
gorithm, as for these algorithms the aes measure has no
meaning.

For comparing all implemented eas we rank our perfor-
mance measures. The most important one in evaluating
algorithm performance is the success rate — after all, we
ultimately want to solve problems. The second measure
is the aes, in case of comparable sr figures we prefer the
faster ea. The mean error at termination is only used as a
third measure as it might suggest preferences between eas
that fail.

Besides the real performance measures sr, me, and
aes— that tell something about how an algorithm finishes
its runs — we also report statistics reflecting algorithm be-
haviour during its runs. For this purpose, we use the cham-
pions error (ce) measure, being the number of constraints
violations in the best individual found up to a given time
during a run5. Time is interpreted by the number of fitness
evaluations and we record the ce every 1000 evaluations.
For each value of p in model E we draw a graph showing
the average ce over all runs for that p at every sample time
instance (i.e., after every 1000 fitness evaluations).

B. Experimental setup

Our test suite consists of 250 solvable problem instances:
25 instances for 10 values of p in model E(20, 20, p, 2) That
is, we set the number of variables n and the domain size D
to 20, and k at 2. The values for p are chosen from the set
{0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.30, 0.31, 0.32, 0.33}. For
each p we generate 25 solvable instances. To achieve this we
repeatedly generate an instance, then verify if it is solvable
using a sound and complete algorithm (simple backtrack-
ing) and discard it if it is not solvable. This process be-
comes more difficult when p is increased as more instances
become unsolvable, but also because of the phase transition
that occurs around 0.33, hereafter the chance that a csp in-
stance is solvable is too small, cf. Table XI. On the other
hand, instances generated using a value for p lower than
0.24 have many solutions and we found that they are easy
to solve quickly using a simple method such as a greedy
algorithm that tries to assign a value to a variable without
violating any constraints and then moves on to the next
variable without ever backtracking.

In Section VI we discussed the different models that exist
to create and analyse binary csps. There we argued for
using Model E, as it does not suffer from certain flaws found
in the other models. However, the parameters of those
models can still be calculated for instances generated using
Model E. The first two parameters, the number of variables

5Note that although ce and me only differ on the time when the
measures are taken, we added the convergence graphs to provide more
information on the behaviour of the algorithms during the run.

TABLE XI

The parameter p in Model E, with the parameter p2 from

older models and Smith’s prediction of the number of

solutions

p p2 E(solutions)

0.24 0.213224 1707299.07
0.25 0.221000 258652.614
0.26 0.228720 38984.6092
0.27 0.236556 5600.99655
0.28 0.244147 838.870129
0.29 0.251670 125.400589
0.30 0.258936 19.6420135
0.31 0.266507 2.79148238
0.32 0.273767 0.42173145
0.33 0.280811 0.06618763

and the domain size, are the same for any model. The
third parameter p1 for the older models is the density of
the constraints. For all instances we use in our study this
parameter is 1, which is a result of using Model E with
a parameter high enough. We point to [1] for a formal
definition of “high enough”, but we suffice here to note
that setting p in Model E higher than 0.05 is already high
enough to be certain that p1 is one. The last parameter
of the older models is p2, it is depicted in Table XI where
we present the p2 per setting of p in Model E. As this
latter model uses a method where it may choose to select
repeatedly equal pairs, this parameter shall always be lower
than p when we measure it.

By using the conjecture of Smith [67], [68], [69], [70], [71]
that the most difficult instances are those with one solu-
tion together with a estimation of the number of solutions
we show that the range for p in Model E used in our ex-
periments actually runs through the mushy region. This
prediction is as follows,

E(solutions) = mn(1 − p2)
n(n−1)p1

2 .

In Table XI we clearly see that when moving from p =
0.31 to p = 0.32 the predicted number of solutions drops
below one. This is where, according to Smith’s conjecture,
problem instances should be extremely difficult to solve.

When an algorithm does not find a solution after 100,000
evaluations it is terminated and the run is marked as un-
successful. The choice of this value is based on results with
some of the algorithms presented here in combination with
algorithms that are sound and complete [34]. Using 100,000
evaluations is comparable to the maximum effort required
by algorithms that are sound and complete.

C. Experimental results

We perform 10 independent runs on each of the 25 in-
stances belonging to a given p value, amounting to 250 data
points used for calculating our measures.

The outcomes for each algorithm are presented using four
figures. The first three are the real performance measures:



the sr, the aes, and the me results for each p, respectively.
The fourth figure contains the average ce curves for all ten
p values. To obtain a good comparison we analyse these
outcomes from different perspectives:
• effectiveness measured by success rates,
• efficiency measured by the number of fitness evaluations,
• efficiency measured by the number of conflict checks per
fitness evaluation.

Furthermore, we compare the best eas with a good clas-
sical algorithm measuring the number of conflict checks
over the whole run. This implies a third comparison of
efficiency.
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Fig. 1. Results for the co-evolutionary approach (ccs)

C.1 Effectiveness

Looking at the effectiveness for low p values we can can
distinguish four groups. The first group is formed by ccs,
arc-ga and mid as they never find a solution, hence we
do not include graphs for the sr (always zero) and the
aes (always undefined). The second group contains the
integer-based Standard ea, H-ga.2 and coe-h ga. These
algorithms have similar performance. Their sr is between
2–4% on the easiest p = 0.24 degrading rather quickly for
increasing values of p (implying unreliable aes values), but
the mean error is showing only a rather moderate increase
with p. The third group consists solely of the permutation-
based Standard ea with a sr of almost 30%. Finally the
fourth group consists of H-ga.1, H-ga.3, saw and the
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Fig. 2. Results for the Microgenetic Iterative Descent (mid)

Glass-Box algorithm. It is clearly distinguished by algo-
rithms having a success rate larger than 80% at p = 0.24,
which then degrade linearly with increasing p until almost
zero at p = 0.30.

When we compare the success rate graphs from algo-
rithms in group four we find that the best performance is
by H-ga.3, saw and Glass Box, where these algorithm are
the best for a subset of p settings.

The ce curves form bands of the same shape that show
the convergence of the algorithm on the best found result.
For all eas except saw these graphs show the same be-
haviour when the difficulty of the algorithm increases. The
shapes of these graphs are similar for various p values, but
they show worsening results for increasing p’s. At the same
time we witness a linear incline of the average best number
of violated constraints of the best individual at the end of
a run. This tells us that the effort to find good partial
instances becomes more difficult with equal steps over the
increase of the parameter p.

It should be noted that the ce and me curves for saw
must be interpreted differently from those of the other eas.
Because the weights wi are updated by adding the incre-
ment ∆w, the range of the fitness function values is con-
tinuously scaled up. This makes a direct comparison with
other ce and me figures difficult. This effect is visible in
the ten plots in Figure 9. Every 25 evaluations this vector
is updated resulting in higher fitness function values if saw
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Fig. 3. Results for the arc-ga

TABLE XII

Ranking of algorithms based on success rate.

groups algorithms

group 1 ccs, arc-ga, mid
group 2 integer-based Standard ea, H-ga.2, coe-h ga
group 3 permutation-based Standard ea
group 4 H-ga.1, H-ga.3, saw, Glass-Box

is not successful in resolving the uninstantiated variables
of the best individual. We clearly see that for more dif-
ficult instances, i.e., higher values of p, the ce curves are
steeper. The waving pattern in the plots is the result of the
update process whereby the fitness values and thus the ce
increases, after which it will decrease when the population
is adapting to the new saw vector.

In Table VII-C.1 we give a ranking of algorithms based
on their success rates.

The overall winner regarding success rates is the saw
algorithm.

C.2 Efficiency 1

Considering the number of fitness evaluations we can im-
mediately distinguish the “looser group” containing the eas
that never find a solution. These algorithms, mid, ccs, and
arc-ga, always exhaust the maximum amount of 100,000

TABLE XIII

Ranking of the algorithms based on average number of

evaluations to termination.

groups algorithms

group 1 ccs, arc-ga, mid
group 2 integer-based Standard ea,

permutation-based Standard ea,
H-ga.2, coe-h ga

group 3 H-ga.1, saw
group 4 H-ga.3, Glass-Box

evaluations and the AES cannot be defined.

Trying to compare the other eight algorithms by the aes
values from Figures 1–11 it occurs that without further
statistical analysis it is hard to establish if there are sig-
nificant differences between their performances. Further
inspection shows that for higher p’s with a corresponding
low sr there are just a few data points to calculate the aes
values, making the statistics unreliable. Therefore, statisti-
cal verification is carried out based on the average number
of fitness evaluations to termination (aet). The difference
with aes is that here all runs – and not only the success-
ful ones – are taken into account. Using aet also makes
the size of the resulting data sets in a comparison of two
algorithms equal, regardless of their sr.

We applied analysis of the variances (anova) and the
t-test in the understanding that although the formal pre-
requisites of normal distribution and equal variance can
not be guaranteed, these tests are robust in this respect.
We performed anova with a confidence interval of 95% for
each p from 0.24 to 0.33 and found that only for p = 0.31
were we unable to reject the null hypothesis of anova. This
means that for all other p’s the results regarding aet are
significantly different. However, for p = 0.32 and p = 0.33
the number of successful runs is very low causing borderline
anova figures. Therefore, we decided to disregard results
for p = 0.31, 0.32, 0.33 from further analysis.

An ordering of the algorithms can be obtained by cal-
culating two-sample t-tests of all combinations of the re-
maining eight eas. Because this is a multiple comparison
procedure we have to use the Bonferroni Adjustment to ad-
just the significance level ([26], [41]). As the comparisons
were made between eight algorithms, the resulting signifi-

cance level is (1−0.95)/ 8·(8−1)
2 = 0.05/28 = 0.0017857 with

a confidence interval of 0.99821. We performed first a two-
sided two-sample t-test on all combinations of these eas
followed by a single-sided two-sample t-test. This analysis
indicates three groups, hence in total we can distinguish
four groups again, as shown in Table XIII. The difference
between these groups is significant with the Bonferroni ad-
justment.

To identify an overall winner regarding efficiency mea-
sured by the number of fitness evaluations we find a sec-
ondary ordering among the best group showing a slight
advantage of the Glass-Box ea.



TABLE XIV

Number of conflict checks per evaluation for every

evolutionary algorithm, ordered from small to large

Algorithm Average Standard
deviation

Standard ea int. 190.21 0.0279
coe-h ga 196.57 5.7996
mid 380.64 0.1505
Standard ea perm. 693.57 38.407
saw 703.08 21.119
arc-ga 1270.8 16.780
H-ga.1 1833.2 24.075
H-ga.2 2089.8 0.2721
Glass-Box 2803.4 795.06
H-ga.3 4707.8 251.66
ccs 20270 0.0000

C.3 Efficiency 2

Although fitness evaluations form a standard measure
for comparing the efficiency of evolutionary algorithms, in
some cases they do not show the whole truth. In our case
the use of heuristics implies extra work that is invisible for
this measure. To make this hidden work visible we measure
the average number of conflict checks per evaluation, see
Table XIV. This measure is calculated over all runs per-
formed with each ea and gives a global indication of how
much the aes and aet results are “cheating”.

This measure shows large differences. We notice that
poorly performing algorithms often use a low number of
conflict checks per evaluation. Naturally, using more con-
flict checks gives opportunity to learn more about the prob-
lem instance at hand and be more successful in solving it.
Looking at the top three heavy users of conflict checks we
see two things. On the one hand, ccs is a particular case:
it uses (an enormous amount of) conflict checks for fitness
evaluation purposes, but not in heuristics. This explains
why there is no correspondence between its (poor) per-
formance and this measure. On the other hand, H-ga.3
and Glass-Box are among the best performing algorithms.
It is remarkable that saw uses approximately 1/4 − th
(vs. Glass-Box), respectively 1/7 − th (vs. H-ga.3) of
conflict checks, but has better sr results than these algo-
rithms. These observations relativate the ranking based on
the number of fitness evaluations as given in the previous
section.

D. Comparison to classical methods

This study would not be complete without comparing
the performances of eas to traditional sound and complete
constraint satisfaction algorithms. Earlier comparisons be-
tween classical methods and evolutionary algorithms on bi-
nary csps use the average number of conflict checks [34],
[33] or the number of flips in [27].

Our comparison between classical and evolutionary algo-
rithms is restricted to one very good traditional algorithm

and the best four eas from Table VII-C.1: H-ga.1, H-
ga.3, saw, Glass Box. To represent classical methods we
choose forward checking with conflict-directed backjump-
ing (fc-cbj), constructed using two techniques: forward
checking, which originates from 1980 [30] and constraint-
directed backjumping, which was added in 1993 [58]. As
our test set only includes solvable instances and fc-cbj is
a sound and complete algorithm, it always finds a solution
and has a success rate of 1. Therefore, the results are only
given by showing the average number of conflict checks, cf.
Figure 12.

Two important facts may be reported from this com-
parison. First that fc-cbj clearly outperforms the four
evolutionary algorithms on both sr and on the average
number of conflict checks. Second that for the test suite
with respect to fc-cbj the most difficult instances lie at
0.31 and 0.32, which is a confirmation of the fact that we
have performed our study in the mushy region.

Another observation can be made in the comparisons of
the four eas involved. Figure 12 shows that saw is faster
than the other three algorithms on every setting of p, in
terms of the number of constraint checks.

VIII. Conclusions

In this paper we have presented an overview of evolu-
tionary algorithms that have been proposed to solve con-
straint satisfaction problems. We have compared these al-
gorithms and a classical algorithm, forward checking with
conflict-directed backjumping on the same test suite. This
test suite has been created by a problem instance genera-
tor based on a recent theoretical model (model E). This
generator and the instances are available on the Inter-
net6. Future studies of constraint satisfaction problem
solvers can benefit from these, serving as benchmarks and
thus making results comparable. Also the implemented al-
gorithms are available on-line at http://www.cs.vu.nl/

~bcraenen/JavaEa2.

The outcomes of our experiments can be briefly sum-
marised as follows:

1. The classical algorithm we used for benchmarking
clearly wins from all evolutionary methods.
2. Certain eas that have been specifically tailored to csps
— some heavily relying on heuristics — show no signifi-
cant improvement over the Standard ea. The performance
differences between these algorithms are small as if adding
csp specific features would make no difference.
3. The best performing ea concerning effectivity (success
rate) and efficiency (measured by the average number of
conflict checks) is the saw algorithm.

One possible reason for the second finding is that most
heuristics in these algorithms are invented to exploit differ-
ences between constraints, i.e., concentrating the search on
particularly difficult constraints, but the generated csp in-
stances from model E have little inhomogeneity to exploit.

6Generator: http://freshmeat.net/projects/randomcsp, in-
stances: http://www.cs.vu.nl/~bcraenen/resources/csps_modelE_
v20_d20.tar.gz



In our opinion this does not invalidate the choice of the
test suite or the generator, but indicates an interesting as-
pect. We believe that the hardness of many real world
problems is caused by a cluster of hard to solve constraints
within a larger network of easier ones. Algorithms with
heuristics might be good at detecting this cluster — that
might be relatively small — and solve the whole problem
by solving this smaller problem well. Many studies — on
finding where the real hard problems are — report this ef-
fect and “algorithm teasing” problem instance generators
are often based on flattening out structures in order to
withhold simple biases, for instance, on flat, equi-partite
graphs for graph colouring [11]. From this perspective, our
test suite can be seen as representing the very kernel of a
hard problem and algorithms are compared on this kernel.

The weakness of some heuristic based eas is counterbal-
anced by the fact that the best performing eas all involve
heuristics too. Apparently, using heuristics can improve
ea performance, but does not necessarily do so. Heuristics
always introduce a bias enhancing exploitation, meanwhile
reduce the exploration capabilities of the ea. It is therefore
crucial to maintain a good balance between exploitation
and exploration.

The Glass-Box algorithm and saw form examples of
the successful application of heuristics. They belong to
the winning algorithms and outperform their respective
benchmarks (integer-based standard ea and permutation-
based standard ea, respectively), indicating that the ap-
plied heuristics are helpful. To reduce the possibly dis-
advantageous effects of heuristics, both algorithms include
equally powerful explorational elements. Within saw the
stepwise adaption of weights mechanism enables the algo-
rithm to leave local optima and explore different parts of
the search space. In the Glass-Box algorithm the classical
elements of an ea, like crossover and mutation, make sure
that enough exploration is done.

A somewhat surprising variant of the heuristic eas is H-
ga.3 which combines the multi-parent heuristic crossover
and the asexual heuristic operator replacing mutation.
This setup sounds too much biased, but has one of the
best performances of all algorithms, while the multi-parent
heuristic crossover combined with random mutation (H-
ga.2) performs poorly. Apparently, applying the asexual
heuristic operator after the multi-parent heuristic crossover
forms a lucky combination, giving better results than com-
binations of these heuristic operators with random muta-
tion.

The application of heuristics, although improving ea
performance measured in success rate and AES, comes at
a price in terms of additional work hidden for measures
based on the number of fitness evaluations. Table XIV
shows that the Glass-Box ea and H-ga.3 use the most
conflict checks per fitness evaluation (except for ccs). In
this respect saw performs significantly better and among
all eas it approaches the classical benchmark algorithm the
closest, as the comparison in Figure 12 indicates.

This comparative study gives suggestions for future re-
search directions. Analysing the balance between the

heuristic bias and random exploration seems a promising
subject. This might open the way to on-the-fly control of
heuristics, which is especially interesting for it can reduce
the amount of experimentation needed to calibrate heuris-
tics correctly.
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[23] A.E. Eiben, P.-E. Raué, and Zs. Ruttkay. Constrained prob-
lems. In L. Chambers, editor, Practical Handbook of Genetic
Algorithms, pages 307–365. CRC Press, 1995.

[24] A.E. Eiben and Zs. Ruttkay. Self-adaptivity for constraint sat-
isfaction: Learning penalty functions. In IEEE [38], pages 258–
261.

[25] L.J. Eshelman, editor. Proceedings of the 6th International Con-
ference on Genetic Algorithms. Morgan Kaufmann Publishers,
Inc., 1995.

[26] A. Feelders and W. Verkooijen. Which method learns the most
data? methodological issues in the analysis of comparative stud-
ies. In Preliminary papers of the Fifth International Workshop
on Artificial Intelligence and Statistics, pages 219–225, January
1995.

[27] J. Gottlieb, E. Marchiori, and C. Rossi. Evolutionary algorithms
for the satisfiability problem. Journal of Evolutionary Compu-
tation, 10(1):35–50, 2002.

[28] H. Handa, N. Baba, O. Katai, T. Sawaragi, and T. Horiuchi.
Genetic algorithm involving coevolution mechanism to search
for effective genetic information. In IEEE [39].

[29] H. Handa, C. O. Katai, N. Baba, and T. Sawaragi. Solving
constraint satisfaction problems by using coevolutionary genetic
algorithms. In IEEE [40], pages 21–26.

[30] R. Haralick and G. Elliot. Increasing tree search efficiency
for constraint-satisfaction problems. Artificial Intelligence,
14(3rd):263–313, 1980.

[31] J.K. van der Hauw. Evaluating and improving steady state evo-
lutionary algorithms on constraint satisfaction problems. Mas-
ter’s thesis, Leiden University, 1996. Also available as http:
//www.liacs.nl/MScThesis/IR96-21.html.

[32] J.I. van Hemert. Applying adaptive evolutionary algorithms to
hard problems. Master’s thesis, Leiden University, 1998. Also
available as http://www.liacs.nl/~jvhemert/publications/
IR-98-19.ps.gz.

[33] J.I. van Hemert. Application of Evolutionary Computation to
Constraint Satisfaction and Data Mining. PhD thesis, Leiden
University, Leiden, The Netherlands, 2002.

[34] J.I. van Hemert. Comparing classical methods for solving binary
constraint satisfaction problems with state of the art evolution-
ary computation. In Stefano Cagnoni, Jens Gottlieb, Emma
Hart, Martin Middendorf, and Günther Raidl, editors, Appli-
cations of Evolutionary Computing, Proceedings of EvoWork-
shops2002: EvoCOP, EvoIASP, EvoSTim, volume 2279 of
lncs, pages 81–90, Kinsale, Ireland, 3-4 April 2002. Springer-
Verlag.

[35] J.I. van Hemert. Documentation for the RandomCsp li-
brary. Leiden University, 2002. Code and documentation at
http://freshmeat.net/projects/randomcsp.

[36] A. Hertz and D. Kobler. A framework for the description of
evolutionary algorithms. European Journal of Operational Re-
search, 126:1–12, 2000.

[37] Proceedings of the 1st IEEE Conference on Evolutionary Com-
putation. IEEE Computer Society Press, 1994.

[38] Proceedings of the 3rd IEEE Conference on Evolutionary Com-
putation. IEEE Computer Society Press, 1996.

[39] Proceedings of the 4th IEEE Conference on Evolutionary Com-
putation. IEEE Computer Society Press, 1997.

[40] Proceedings of the 5th IEEE Conference on Evolutionary Com-
putation. IEEE Computer Society Press, 1998.

[41] E.L. Korn and B.I. Graubard. Simultaneous testing of regres-
sion coefficients with complex survey data: use of bonferroni t
statistics. The American Statistician, 44:270–276, 1990.

[42] E. MacIntyre, P. Prosser, B.M. Smith, and T. Walsh. Ran-
dom constraint satisfaction: theory meets practice. In M. Maher
and J.-F. Puget, editors, Principles and Practice of Constraint
Programming — CP98, pages 325–339, Berlin, 1998. Springer-
Verlag.

[43] E. Marchiori. Combining constraint processing and genetic al-
gorithms for constraint satisfaction problems. In Bäck [2], pages
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Fig. 5. Results for the H-ga.2 (note the scale of the y-axis of sr)
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Fig. 6. Results for the Standard EA permutation-based (note the
scale of the y-axis of aes and ce)
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Fig. 7. Results for the coe-h ga (note the scale of the y-axis of sr)
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Fig. 8. Results for the Glass-Box ga
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Fig. 9. Results for the Stepwise Adaptation of Weights ea (saw)
(note the scale of the y-axis of me and ce)
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Fig. 10. Results for the H-ga.1
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Fig. 11. Results for the H-ga.3
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Fig. 12. Comparing the evolutionary algorithms H-ga.1, H-ga.3,
Glass-Box and saw with the complete approach fc-cbj on the
average number of conflict checks performed during a run


