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Abstract

Human interaction relies on a wide range of signals, includ-
ing non-verbal cues. In order to develop effective Explain-
able Planning (XAIP) agents it is important that we under-
stand the range and utility of these communication chan-
nels. Our starting point is existing results from joint task
interaction and their study in cognitive science. Our inten-
tion is that these lessons can inform the design of interaction
agents—including those using planning techniques—whose
behaviour is conditioned on the user’s response, including
affective measures of the user (i.e., explicitly incorporating
the user’s affective state within the planning model). We have
identified several concepts at the intersection of plan-based
agent behaviour and joint task interaction and have used these
to design two agents: one reactive and the other partially pre-
dictive. We have designed an experiment in order to exam-
ine human behaviour and response as they interact with these
agents. In this paper we present the designed study and the
key questions that are being investigated. We also present the
results from an empirical analysis where we examined the be-
haviour of the two agents for simulated users.

Introduction
A common approach to explanation generation in automated
planning has been to treat the problem as one of model rec-
onciliation (Chakraborti et al. 2017). In this way, a balance
can be made between generating explanations that update
the user’s model of the environment and selecting explica-
ble action sequences, which need no further explanation. At
the heart of this approach is an accurate user model, which
is not practical in many applications. An alternative view is
to see explanations within the wider context of interaction.

Humans adopt a wide range of communicative channels
during interaction, producing both conscious and subcon-
scious responses, as well as using a variety of behavioural
heuristics. In order to communicate effectively an interac-
tion agent must be able to detect and interpret these signals
or, preferably, anticipate them. With this context in mind, we
are preparing a user study to observe human behaviour and
response in a joint task interaction with a plan-based agent.
While we believe this study should confirm and extend pre-
vious research that has explored joint task interaction, our
main focus is on discovering how concepts related with plan-

based agents (e.g., plan generation, agent intention) can be
utilised to inform the agent’s behaviour.

We have identified plan-based agent behaviours that in-
teract with key aspects of joint task interaction (e.g., uncer-
tainty and knowledge differences). These behaviours have
been used to define two alternative agents: a reactive agent,
which represents an initial interaction, e.g., where little is
known about the human’s preferences and possibly the envi-
ronment; and a partially predictive agent, which represents
a more informed agent that provides information in advance
and attempts to proactively avoid user uncertainty. By gath-
ering both objective and subjective data from humans inter-
acting with these agents, we hope to gain a better under-
standing of how such agents could be designed to be more
acceptable to humans.

As part of this work, we have developed a web-based user
study that we are currently preparing to deploy. The web-
site supports a joint task interaction, where the human user
must complete a task with the help of an instruction/expla-
nation giving virtual agent. In this paper, we present the in-
tentions of our user study, the situations that the participants
will encounter and the questions we are investigating. We
also present the agents that will be compared in the study
and the aspects of joint task interaction that they allow us to
examine. Although we do not yet have results from users,
we present an empirical analysis to compare the strategies
and explanations generated by each of the agent types.

We first present an overview of the joint task setting and
the necessary planning background. We present aspects of
plan-based agent behaviour that are relevant to joint task in-
teractions and then use these to define two alternative agents.
We present our intended user study, an empirical analysis,
related work and finally conclude.

Interaction in a Joint Task

We are interested in investigating the range of human social
signals, affective responses and behavioural patterns exhib-
ited during co-operative joint action in a shared audio-visual
environment. In this work, we consider an instruction giv-
ing and following scenario, which has been designed based
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Figure 1: An example scenario starting at the tree (X), with
2 possible bike locations (Y or Z) indicated by a dotted line.

on the HCRC Map Task (Anderson et al. 1991)1 and the
GIVE Challenge (Byron et al. 2009). In the Map Task, an in-
struction giver guides an instruction follower around a map
using landmarks, while in the GIVE challenge the instruc-
tions are generated by a computer. The former task was de-
signed to investigate human linguistic behaviour while the
latter was proposed as a challenge for testing approaches to
natural language generation. Our task has been designed to
enable human-agent interactions to be observed in various
scenarios typical of joint-action tasks, such as uncertainty as
to an instruction’s intent and knowledge differences between
the instruction giver and an instruction follower. These sce-
narios are not presented to the user in isolation, but as part
of a complete solution. We are therefore also able to ob-
serve how the user responds to the strategy used and how
their responses vary as the task progresses. By situating the
interaction within a task, the interaction is focused towards
a common goal and can therefore provide more naturalistic
behaviour and feedback on task-based interactions.

In this work, we underpin the agent’s decisions and be-
haviour with a planning model that is used both to generate
the agent’s strategy, as well as construct situation-based in-
structions and explanations. Our intention is to investigate
the relationships that exist between the information that the
listener has been presented and their subsequent responses
within specific situations. For example, how does the user
respond to an ambiguous instruction and is their response
different if they already have an idea of the agent’s intentions
(e.g., they believe they are heading north)? Understanding
the human listener’s needs and preferences during interac-
tion can inform our design of virtual agents that must man-
age these requirements as they arise during the interaction.

The Bike Sharing Task
Our scenario involves a simple bike share company, which
receives partial reports about the location of bikes. The vir-
tual agent provides instructions to guide the human user
around a map as they locate and collect the bikes. Figure 1
presents an example map, with the user currently located at
position X and the possible locations of a bike indicated
by a dotted line. The map identifies a collection of land-
marks, which are each illustrated with a recognisable land-

1http://groups.inf.ed.ac.uk/maptask/

mark (e.g., a green house or blue tree). The landmarks are
organised into several districts (e.g., the Northern District).

The Interaction Agent
We assume a virtual instruction giver (agent) is used to com-
municate with the listener, providing instructions to assist
them in the task, e.g., the agent might instruct the user to ‘Go
to the house’ in the example in Figure 1. The agent selects
instructions based on a strategy, which is updated depend-
ing on the listener’s actions (e.g., if they deviate from the
intended path or fail to act). The agent also provides expla-
nations to the listener so that they can better understand the
situation and the intention behind the agent’s strategy. The
agent’s strategy is underpinned by a partially-observable
planning model.

The Agent’s Planning Model A partially observable
planning problem, e.g., (Bonet and Geffner 2011), can be
defined by a tuple, P = 〈F,A,M, I, IP , G〉, with fluents
F , actions A, sensor model M , the actual initial state I , the
positive and negative literals of the state known by the agent
IP ⊆ I , and goal G. An action is defined by its precondi-
tions and effects. An action is applicable if its preconditions
are satisfied in the agent’s partial state and the application
of an action causes its effects to be applied to the agent’s
current state. Sensing actions are triggered whenever they
become applicable and their observations are applied to the
agent’s state. The set of potential agent (partial) states is rep-
resented by SP and can be enumerated through expansion
from the agent’s initial state. A solution to the problem is
a state-action policy, π : SP 7→ A, such that a simple ex-
ecutive can use the policy to iteratively step from the initial
state to a state that satisfies the goal (by looking up the cur-
rent state in the policy mapping and applying the selected
action). We will use π<, to denote the previously executed
sequence of actions and π> to denote the agent’s intended
action sequence.2

The agent’s planning model captures a basic transporta-
tion style domain, supporting traversal between landmarks
and a pickup bike action. The bike locations are initially un-
known. The partial reports (such as ‘bike 1 is in the Western
District’) are used to partially constrain the possible initial
states. Sensing actions for a particular bike and location pair
determine whether a bike is at the location and are activated
when the agent is at the location.

Instruction Generation The model is used to generate the
agent’s strategy and their strategy is used at each step to
generate the next instruction. For example, in the scenario
illustrated in Figure 1, the next plan action might be (move
tree green house). This action is linked to a specific
speech utterance, such as ‘Go to the green house.’ Control-
ling the information presented to the user at each stage of
the interaction provides a key opportunity for generating the
types of scenarios that we are interested in examining (see
the following section).

2Although this might be a branched plan none of the analysis in
this work will extend beyond any branching points.

http://groups.inf.ed.ac.uk/maptask/


Figure 2: A scenario where X is connected to two houses.

Sys ‘Move to the House’
User [Dithering] ‘Um’

Sys ‘The House with the Blue roof?’
User ‘Ah, yes.’ 〈Moves to House 〉

Table 1: Example dialogue for the Bike Share task. The user
is initially not sure, but on further elaboration understands
and enacts the instruction.

Plan-Based Agents within Joint Tasks
We have identified plan-based agent behaviours (e.g., gen-
erating explicable plans and plan summarisation) that inter-
act with aspects of joint-task interaction (e.g., uncertainty
and knowledge difference). The intention is to use these be-
haviours to parameterise the interaction agent (see Section
‘The Agents’) allowing us to experiment with the interaction
under different conditions. In each condition we can observe
human response, behaviour and preferences within various
scenarios common in joint-task interaction. Through these
observations we hope to gain insights that will help in the
future design of human acceptable agents. In the remainder
of this section, we define the plan-based agent behaviours
and describe their links with joint-task interactions.

Uncertainty in Instructions
A common aspect of interaction is unclear or ambiguous in-
structions, which can be caused by under-explaining or dif-
ferent viewpoints. Uncertainty was a focus of the original
HCRC Map Task (Anderson et al. 1991), which has been
widely used for analysing and understanding human dia-
logue within a collaborative joint task context.

We are interested in understanding how the user responds
to situations where they are uncertain about the intention of
the instruction. Consider the example interaction presented
in Table 1, in the context of position X in Figure 2. The
agent instructs the listener to go to the house, but there are
two possible houses. The listener is therefore hesitant. On
detecting this hesitation the agent further elaborates on the
instruction. These situations allow us to analyse listener re-
sponses, both in terms of verbal replies and affective mea-
sures such as frowning and rapid eye movement (e.g., be-
tween alternatives), as well as understanding better any de-
fault heuristics that humans adopt in uncertain situations.

These situations are created in our experiment as a com-
bination of the map design, which incorporate situations

Figure 3: The agent at A generates a plan to collect the bike
at D. The solid pink line illustrates a typical plan, which
includes the ambiguous instruction moving from B to D.
The dotted line illustrates a plan found when the planner is
aware of ambiguous instructions.

similar to the example in Figure 2, and a policy of under-
explaining, similar to the dialogue presented in Table 1. In
these situations the agent can then elaborate on the instruc-
tion, providing the necessary information to disambiguate.

Explicable Plans
Explicable plans require fewer explanations as they coincide
more closely with the user’s expectations (Chakraborti et al.
2017).
Definition 1 Explicability is defined as an ordering rela-
tionship, <E , over plan sequences: Given a user model as a
function U : Π 7→ I, mapping plans to inexplicability scores
(e.g., the number of explanations required by the user for
the plan to make sense) and two plan traces: π0 and π1 then
π0 <E π1 (π0 is less explicable than π1) ifU(π0) > U(π1).
The issue of generating explicable plans has been considered
within a model reconciliation framework (Chakraborti et al.
2017), but requires an accurate user model. We consider it
more likely that understanding how users respond during an
interaction will be a gradual process. Therefore, instead of
requiring a complete user model, we should be able to ex-
ploit partial information (that ideally becomes more certain
during the interaction). We present an approach to extend the
agent’s model with additional knowledge about the interac-
tion, allowing the agent to proactively shape their strategy to
make their plan more explicable.

We have focused on the uncertainty of ambiguous instruc-
tions. For example, after a period of time it may become
clear that certain instructions, e.g., a and b, are commonly
mistaken (e.g., frequently the listener goes the wrong way
or appears hesitant). In this work, we deliberately place the
user in uncertain situations and we can therefore directly en-
code this in the model. For example, in the scenario illus-
trated in Figure 3 the agent at A generates a plan to collect
the bike at D. The solid pink line indicates a typical plan
from A to B and then on to D. At location B an instruc-
tion such as ‘Go to the house’ is clearly ambiguous, poten-
tially leading to confusion. We are interested in examining



Figure 4: An example of the agent’s intentions for the next
step and the motivating target.

whether the user response is different when their route has
fewer ambiguous instructions (e.g., the route through C).

In order to generate the plans we extend the agent’s prob-
lem model to incorporate knowledge of the ambiguous in-
structions. This takes the form of a preference that actions
that represent ambiguous instructions are avoided (or pe-
nalised). Of course, these are soft constraints and in many
cases it might be necessary, or expedient to use these actions.
To this end we modify the action cost model, manipulating
it in order that instructions that are more likely to lead to
confusion incur a higher cost. For each action, a, we define
the new cost as:

cost(a)′ = δ|{b : similar(a, b)}|+ cost(a) (1)

For the purposes of this investigation we assume a linear re-
lationship between the number of ambiguous options and the
incurred cost, controlled by the parameter δ. Notice we are
also exploiting the fact that ∀(a, b) : similar(a, b) =⇒
[∀s s |= a ⇐⇒ s |= b]. This holds because all groups
of actions that can be ambiguous instructions in this domain
have the same preconditions.

In the example in Figure 3, the new cost function will pe-
nalise the ambiguous instruction in the plan indicated by the
solid pink line at B. The alternative plan through C is not
penalised and therefore becomes more attractive.

Plan Summarising
Previous results indicate that human interaction part-
ners typically prefer to be informed of the plan in ad-
vance (Kalpagam Ganesan et al. 2018; Bartie et al. 2018).
As the agent’s intentions are captured in its plan, providing a
view of the plan to the user allows them to better understand
the agent’s intentions (Amir, Doshi-Velez, and Sarne 2019).
In this work, we use the next target in the plan to provide a
localised view of the plan. We define target as any knowl-
edge gain that reduces the uncertainty in the state (e.g., can-
celling out a potential location for a bike) or any action that
achieves a subgoal (where that subgoal is not subsequently
removed in the plan). For example, in Figure 4 an agent at
the mountain might have a plan to move to the tree and then
on to one of the houses. In this example, the identified target
is knowledge about the Western District bike. Whereas the

individual plan steps are used for selecting the instructions
of the agent, the next target can provide justification, which
can explain why the agent is taking an individual step. We
discuss the use of plan summarising further in ‘Presentation
Modes.’

Local Inefficiency
Local inefficiency is where the part of the plan that is be-
ing executed could have been replaced by a more efficienct
alternative sequence, relative to some cost function.

Definition 2 For a plan trace, τ = s0, a1, . . . , an, sn,
the subsequence ai, . . . , aj is locally inefficient if
∃a′1, . . . , a′m : sj = a′m(..a′1(si−1)..)∧ cost(a′1, . . . , a′m) <
cost(ai, . . . , aj).

For a state, sx, and look-back and look-ahead parameters:
(θ<, θ>), we can perform a local bounded inefficiency anal-
ysis for the plan fragments in the interval, x− θ< to x+ θ>.

The reason for perceived local inefficiency may be a de-
liberate choice, lack of planning resource (i.e., this fragment
is only part of a much longer plan) or through alternative hu-
man preference. Consider again the example in Figure 3 and
if we assume that the route through C is clearly longer. The
agent’s decision to choose the path throughC, in order to re-
duce the number of confusing instructions, is not necessarily
clear to the user. The agent might therefore explain its rout-
ing choice, e.g., ‘I chose this route because it was easier to
explain. It is only a little longer.’. We expect that as human
preferences are better understood, similar analysis using a
human inspired cost function will allow a deeper analysis of
perceived inefficiency.

Presentation Modes
The pathway towards generating effective explanations must
balance the agent’s (lack of) knowledge with human prefer-
ence’s for receiving and giving information. While there is
evidence that humans will typically underexplain and only
provide explanations when it becomes clear that there is a
problem (Anderson et al. 1991), it has also been shown that
humans can perform better when they are informed of what
is going on in advance (Foster et al. 2009). Understanding
how these competing aspects relate to our setting will allow
us to better manage the agent’s information presentation.

In the ‘Plan Summarising’ subsection the current instruc-
tion was explained in the context of the agent’s current
target. This explanation can be used as a pre- or post-
explanation. As a post-explanation the explanation can be
used as a reaction to the listener appearing confused or un-
certain. For example, if the listener in Figure 4 believed they
were heading east and thinks the agent has made a mistake
then indicating the agent’s current intention would help. The
explanation can also be used as a pre-explanation, so that the
user is given the justification of the following subsequence
of actions in advance. The comparison of these cases: in-
formed of the agent’s intentions or not, will be used to ex-
amine the difference in user behaviour when encountering
ambiguous instructions. In (Foster et al. 2009), they demon-
strated that this was beneficial in a joint task that was cleanly
separated into stages. In our task some targets only reflect



Dialogue Action 1 e.g., ‘Move to the House’
User Action Timer Wait: Timer 1:
Dialogue Action 2 e.g., ‘The Blue one’

User Action Timer Wait: Timer 2
Repeat While no user action

Table 2: A behavioural template with space for two main
dialogue actions, e.g., an initial instruction and then further
elaboration or an explanation.

partial progress (e.g., discovering a bike is not at a location)
meaning we can observe whether pre-explanations of this
sort would still be beneficial when the tasks are interleaved.

Initiative Switch

To simulate a situation where the user knows more than the
system, we have made some bikes visible to the user from
the surrounding landmarks. In these situations the agent will
still be unaware of the bike’s actual position. We are inter-
ested in observing the user response when their knowledge
leads them to believe that the agent’s instruction is not effec-
tive. We will examine whether offering an initiative switch,
so that the user can exploit their knowledge, is preferred by
the user and whether it leads to different behaviour.

The Agents
To gain a deeper understanding of the relationship between a
human’s reaction and their knowledge it is important that we
also control what and when information content is provided
to the human. As a result, we have designed two alternative
agents: a responsive agent (Agent 1) and a partially predic-
tive agent (Agent 2). Both agents are defined using a shared
behaviour template, which makes for an easier comparison
between the conditions. Due to the online nature of the study
and the associated restrictions an agent can only respond to
user inaction (not dialogue or more informative signals). As
such, in some cases we allow the agents to use certain infor-
mation that might otherwise require dialogue to be obtained
in a real environment.

The Behaviour Template

We have defined a simple behaviour template to underpin
the agents’ general behaviour. A simplified template for the
example in Figure 2 is presented in Table 2. The agent’s di-
alogue is defined in two main parts: an initial dialogue ac-
tion (e.g., for an instruction) and a second dialogue action,
which occurs after user hesitation (e.g., for elaboration or
explanation). Although not shown, our template also distin-
guishes between landmarks that have previously been visited
(to allow an alternative dialogue action, such as ‘Go back
to the house’) and slots for transition based actions (e.g., a
pickup-bike action can be linked with an acknowledge-
ment). A key aspect of the behaviour templates in the context
of the user study is a set of shared parameters (e.g., timing)
that define how the templates are mapped onto behaviours.

Dialogue Action 1 ‘Move to the Cafe’
User Action Timer Wait: 2 seconds
Dialogue Action 2 ‘Next is the Eastern bike.’

User Action Timer Wait: 5 seconds
Repeat While no user action

Table 3: An example template for Agent 1. The next target
is used in dialogue action 2 to justify moving to the House.

Agent 1 BEHAVIOUR DESCRIPTION

1: function DIALOGUEACTION1(s, π<, π> = a0, .., an)
2: if isa(a0,move) then
3: γ ←‘Go to the ’ + type(a0.dest)
4: end if
5: ...
6: end function
7: function DIALOGUEACTION2(s, π<, π> = a0, .., an)
8: if isa(a0,move) then
9: if ∃op′ s |= op′ ∧ a0.dest == op′.dest then

10: γ ←‘Go to the ’ + color(a0.dest) + ‘ one’
11: else
12: if LBInefficiency(π<, π>) then
13: γ ←‘I had a long plan to make...’
14: end if
15: γ ← γ+‘Next is the’+target(π>)+‘bike’
16: end if
17: end if
18: ...
19: end function

Agent 1: The Responsive Agent
During the early interactions between a human user and an
agent it might be unclear how the agent can best manage the
interaction to prevent the user from becoming uncertain or
confused. This contrasts directly with the assumption typ-
ically made in model reconciliation-based explanation ap-
proaches (Chakraborti et al. 2017), where both the human’s
model of the environment and their reasoning capabilities
are accessible. We are investigating how human communi-
cation signals can be used as an indication of the user’s re-
quirements, e.g., such as a need of more information.

The first agent’s behaviour is defined by the rules indi-
cated in the behaviour description in Agent 1. These rules
are used to parameterise the template, presented in Table 2.
For example, Table 3 instantiates the template for the agent’s
strategy for the example in Figure 3. Each episode starts with
the instruction of where to go, or what to do. We will focus
on move actions (e.g., lines 2 and 8), though other actions
are mapped in a similar way. For a move action the agent
uses the landmark type (e.g., house) to indicate the next
landmark (line 3). In the case of user inaction then the agent
uses its second dialogue action. If the instruction is ambigu-
ous then they use this in order to elaborate on the instruction
(line 10). Otherwise the agent indicates their intended target
(line 15), as described above and in the case that their plan
is locally inefficient then they precede the target with an ac-
knowledgement of the inefficiency (line 13). The agent also



Dialogue Action 1 ‘Next is the Eastern bike.’
‘Move to the Tree’

User Action Timer Wait: 2 seconds
Dialogue Action 2 ‘I chose this route because

it was easier to explain..’
User Action Timer Wait: 5 seconds

Repeat While no user action

Table 4: An example template for Agent 2, where the agent
informs the listener of the next target in dialogue action 1
and then justifies its choice of a longer route.

Agent 2 BEHAVIOUR DESCRIPTION

1: function DIALOGUEACTION1(s, π< = ..a−1, π
> =

a0..)
2: if isa(a0,move) then
3: if ¬target(a−1, π

>) == target(π>) then
4: γ ←‘Next is the ’+target(π>)+‘ bike’
5: end if
6: γ ← γ+‘Go to the ’ + type(a0.dest)
7: end if
8: ...
9: end function

10: function DIALOGUEACTION2(s, π<, π> = a0, .., an)
11: if isa(a0,move) then
12: if ∃op′ s |= op′ ∧ a0.dest == op′.dest then
13: γ ←‘Go to the ’ + color(a0.dest) + ‘ one’
14: else
15: if K u shortcut(s, a0) then
16: γ ←‘Can you see it? Go ahead...’
17: else if LBInefficiency(π<, π>) then
18: γ ←‘I chose this route because...’
19: end if
20: γ ← γ+‘Next is the’+target(π>)+‘bike’
21: end if
22: end if
23: ...
24: end function

implements default acknowledgement actions, e.g., when a
bike is picked up or the user goes the wrong way.

Agent 2: The Predictive Agent
In order to allow a deeper analysis of human response and
preferences we have also developed a second, partially-
predictive, agent. This agent combines a strategy of pre-
explaining with an exploitation of a richer understanding of
the domain in order to reduce the user’s uncertainty through
both avoiding (forward planning) and preparation (providing
information in advance). The agent’s planning model cap-
tures knowledge of ambiguous instructions in its cost model,
as presented in the ‘Explicable Plans’ subsection. The gener-
ated plans will therefore tend to lead to sequences where the
user will be more certain of the intention of the instruction.

The agent’s behaviour is given in the behaviour descrip-
tion in Agent 2. In this case, if the agent has just changed to
focus on a new target since the previous action (e.g., line 3)

Figure 5: A screenshot of the system used in our study. The
user is able to see where the districts are positioned, as well
as the nearby landmarks (note: greyed out landmarks and
roads would not be presented to a participant). Their view
includes a virtual instruction giver (top left), which is used
for interaction and their own video feed (bottom left).

then the new target is indicated to the user (line 4). This is
illustrated in Table 4, which instantiates the behaviour tem-
plate for the agent’s strategy for the example in Figure 3. The
agent (also) presents the next instruction as before. A brief
(one step) initiative switch is offered (line 16) in the case
where the agent is indicating a possible bike position, but
there is an alternative applicable action that leads to a bike
and the user can see the bike. The agent’s plan is generated
with the knowledge of the ambiguous instructions encoded
in its cost model. However, we use the original model to
measure inefficiency, as the user will not have the knowledge
to consider the instruction complexity. Therefore the justifi-
cation for the inefficient plan (assuming a good enough plan
is obtained) is attributed to the agent’s motivation to simplify
the instructions (line 18), as mentioned above.

The User Study
We are currently preparing to conduct an online user study
to investigate the following questions:

1. Do unexpected situations/instructions lead to detectable
(i.e., biometric, behavioural or linguistic) user response?

2. And if yes: does the reason why the situation/instruction
is unexpected lead to different types of user response?

3. Does the user’s response change as the task progresses?

4. Does providing the user with explanations lead to im-
proved confidence and trust in the system?

5. Can simple user heuristics be used to explain aspects of
the user’s behaviour (nearest, least visited, intent)?

These questions are aimed at deepening our understanding
of how planners can be used to better manage human inter-
actions. We aim to investigate human responses, firstly to
identify predictors so that we can provide more information
to the planner during the interaction, providing the opportu-
nity to respond to the situation reactively. More specifically
we are investigating whether different situations lead to dif-
ferent responses, e.g., uncertainty about instruction ambigu-



ity or confusion over strategy. This finer granularity will pro-
vide more information to the planner, allowing it to make
more informed choices in future interactions. We are also
investigating default behaviours and preferences, which will
inform on the selection of explanation strategy, e.g., using
pre- or post-explanations, and potentially informing the way
plans are constructed. As well as gathering objective data
(as described below) we will also collect subjective data
from surveys. This will allow us to better understand the
user’s experiences and preferences, and enable us to analyse
their perception of the virtual humans. In the remainder of
this section we will discuss how the interaction is controlled
to ensure the intended user experience and then provide an
overview of the system that we have developed to support
the online study.

Controlling the Interaction
The first three questions require that we can observe user re-
sponse in a variety of situations and that the user receives the
appropriate information in each situation for each condition.
The agent is a key component for controlling the informa-
tion that is presented to the listener and their rule-based be-
haviour descriptions (see ‘The Agents’ Section) allow their
response to be conditioned on the current situation. We will
use four conditions: the responsive and predictive agents de-
scribed above and two baseline agents, each providing dif-
ferent information or a different strategy at different stages.
This will allow us to observe how the user’s behaviour and
response is altered by the strategy being used and the infor-
mation they have been provided.

The map design is also an important aspect for ensuring
appropriate situations are experienced during the interaction,
including ambiguity and knowledge difference. For exam-
ple, we showed in Figure 2 how placing similar landmarks at
adjacent positions can lead to ambiguous instructions. Am-
biguous instructions are important as they allow us to ob-
serve human reaction to uncertainty: how they respond and
what they choose (e.g., do they pick the closest one or the
one they have not already visited?). This is particularly in-
teresting in combination with the information provided by
the agent, e.g., is behaviour different when the user already
knows the agent’s intentions? The maps therefore have been
carefully designed to ensure that execution sequences will
encounter these situations.

The Study Website
A screenshot from our system is presented in Figure 5
(see (Lindsay et al. 2020) for more details), with the map in
the centre and the virtual human and user feed presented on
the left. The virtual instruction giver provides the user with
verbal instructions, such as ‘Go to the house.’ The user feed
informs the participant of the major information/data that is
being recorded (e.g., video and audio). The main portion of
the screen is taken up by the interactive map on which the
experiment plays out.

The back-end server-based part of the system collects and
aggregates the behavioural and interaction data from the par-
ticipant for later offline study and analysis. The recorded
data includes video (for facial expression analysis), audio

and mouse movement data, as well as in task events, such
as recording the user’s choices and their execution trace
through the task. All data collected is time-stamped, and ag-
gregated for an individual user, allowing a full analysis of
their interaction with the system.

Empirical Analysis
As part of our preparations for conducting the online user
study we have tested our approach in order to examine the
behaviours of the reactive and predictive agents. In this sec-
tion, we present empirical results generated as part of this
testing. Our approach to partially-observable planning uses
K-Replanner (Bonet and Geffner 2011), which supports ef-
ficient plan generation for partially-observable problems via
replanning. K-Replanner exploits a compilation of the prob-
lem to classical planning and we have analysed using al-
ternative planners/configurations to understand the expected
behaviour of the resulting agent and the policies generated.

In our user study, each participant will be presented with
four conditions. As such, we constructed four maps each
with around twenty landmarks and five bikes (similar to the
graph in Figure 5). The goal of each problem was to find and
collect the bikes and return to the base. The planners/config-
urations we used with a responsive strategy (Agent 1, above)
were:
R-FF The FF planning system (Hoffmann and Nebel 2001).
R-Lama The LAMA-11 configuration of Fast Down-

wards (Richter and Westphal 2010) with a 3 second time-
out (the average was 1.5 seconds).

The planners/configurations we used with a predictive strat-
egy (Agent 2, above) were:
Predictive (δ = {1, 2, 3}) Planning model with knowledge

of ambiguous instructions. δ controls balance between
avoiding ambiguous questions and plan length (see Equa-
tion 1). LAMA-11 is used with a 5 second time-out.

Each configuration was used within K-Replanner and the re-
sulting plans were converted into state action policies. Each
policy allows a bounded amount of exploration, including
up to two errors as well as selected additional alternatives,
e.g., where the given instruction is ambiguous. In this way
we have allowed some user flexibility, while still generating
reasonable sized policies for the online study. It should be
noted that the comparison of quality between these planners
is not intended to be fair in a traditional sense, e.g., FF re-
turns its first plan, whereas Lama and Predict are being used
as anytime planners. However, the intention is to use a vari-
ety of generation approaches to provide a wider context for
understanding how these planner configurations would lead
to alternative behaviours.

Generation of Explanations
In order to compare both the strategies captured by the poli-
cies and the explanation generation we used each policy to
generate execution samples. A parameter, γ, was used to
control the probability that the simulated user would follow
each instruction. In this experiment this parameter was fixed
at γ = 0.95 in all runs. Table 5 presents the executions: the



Explanation\Planner Reactive Predictive
R-FF R-Lama δ = 1 δ = 2 δ = 3

|π| 35.82 (2.10) 28.40 (1.88) 27.36 (1.63) 27.78 (1.78) 28.72 (1.77)
|similars| 16.83 (1.51) 12.54 (1.22) 9.92 (1.08) 9.54 (0.92) 9.60 (0.94)

Move 30.60 (1.99) 23.18 (1.74) 22.13 (1.49) 22.57 (1.66) 23.48 (1.68)
Pickup 5.22 (0.43) 5.22 (0.46) 5.23 (0.46) 5.21 (0.44) 5.24 (0.46)

Elaborate 14.82 (1.38) 11.47 (1.20) 8.90 (1.02) 8.52 (0.87) 8.56 (0.89)
PreTarget(K) 0.00 (0.00) 0.00 (0.00) 5.46 (0.92) 6.43 (0.92) 8.05 (0.57)

Target(K) 13.66 (1.49) 10.62 (0.98) 12.17 (1.29) 12.92 (1.13) 13.77 (1.19)
Target(Pos) 2.12 (0.35) 1.09 (0.38) 1.06 (0.24) 1.13 (0.45) 1.15 (0.50)

Inefficient 1.11 (0.50) 0.00 (0.00) 0.03 (0.18) 1.04 (0.50) 1.05 (0.51)
Initiative 0.00 (0.00) 0.00 (0.00) 0.97 (0.32) 1.03 (0.21) 1.04 (0.22)

Table 5: 1000 executions were simulated with γ = 0.95 for Map 1 and policies generated using alternative classical planning
approaches. The means (and standard deviations) of the sequence length, number of alternatives compatible with the instruction
(|similars|) and number of instructions and explanations encountered were recorded.

Map\ Planner R-Lama Predictive (δ = 1)

Map1 |π| 28.40 (1.88) 27.36 (1.63)
|similars| 12.54 (1.22) 9.92 (1.08)

Map2 |π| 25.60 (1.75) 22.69 (1.82)
|similars| 11.86 (1.19) 8.89 (1.04)

Map3 |π| 24.55 (1.80) 28.74 (1.91)
|similars| 15.01 (1.70) 10.78 (1.46)

Map4 |π| 32.78 (1.68) 37.04 (2.61)
|similars| 13.75 (1.29) 10.38 (1.16)

Table 6: Sampled means (and standard deviations) of the
execution length and number of similar alternatives for 1000
policy samples, for the 4 maps and γ = 0.95.

execution details, the encountered instructions and the gen-
erated explanations, for Map 1. The results show the average
execution length (|π|) and the average number of alterna-
tives that were compatible with an instruction (|similars|).
‘Elaborate’ counts the number of move instructions that
were ambiguous, ‘Inefficient’ counts cases of detected lo-
cal inefficiency and ‘initiative’ counts the number of offers
to take the initiative. The explanation counts cover both di-
alogue actions (see Table 2). For example, in Agent 1 the
targets: bike target (‘Target(K)’) and destination target (‘Tar-
get(Pos)’), are presented as part of the responsive explana-
tion strategy and only occur in dialogue action 2. Whereas
Agent 2 also uses the targets (e.g., ‘PreTarget’) in dialogue
action 1, to prepare the user.

The plan lengths indicate that executions using R-FF were
longer and typically involved some local inefficiency. It is
unsurprising that as the execution length increases, so do
other features, such as number of ambiguous instructions.
The execution traces generated by R-Lama were shorter with
no identified local inefficiency.

The predictive plan lengths and number of ambiguous in-
structions are similar to each other. However, it is clear that
the configurations are generating alternative plans. The in-
crease in ‘Target(Pos)’ suggests that more switches are be-
ing made between subtasks. The executions for δ > 1 are
both likely to have local inefficiency, unlike δ = 1. Notice
in the case of the predictive agents, local inefficiency is more
likely to be due to avoiding ambiguous instructions.

Avoiding Uncertain Actions
Table 6 presents the results for plan length and alternatives
for the reactive and predictive agents that we will use in the
user study on each of the 4 maps. It shows that the predic-
tive agent is able to generate plans with fewer ambiguous
instructions in each of the maps. The maps were designed
with the aim of putting the participant into ambiguous situa-
tions and so it is expected that the predictive agent will still
encounter ambiguous instructions.

Related Work
The increasing adoption of AI Planning in real world appli-
cations has led to a growing focus around Explainable Plan-
ning (XAIP) (Fox, Long, and Magazzeni 2017). Previous
work has examined the impact of robot strategy in human-
robot interactions: In (Zhang et al. 2015) they demonstrate
that a proactive robot strategy can lead to better team per-
formance, but increase cognitive load; (Dragan et al. 2015)
examine the related issues of predictability and legibility.

In (Miller 2019) it is argued that explainable AI (of which
XAIP forms a part) should be based on the findings of pre-
vious work in the social sciences, such as cognitive science.
Last year we outlined our intentions to bring together ex-
perimental research in cognitive science, involving coopera-
tive joint action, with the practical construction of automated
planning tools to apply to the task of explanation gener-
ation (Petrick, Dalzel-Job, and Hill 2019). In (Dalzel-Job,
Hill, and Petrick 2020) we investigated measures of confi-
dence in the context of an instruction-giving task, where bio-
metric and behavioural measures (eye movements, galvanic
skin response, facial expression, and task performance) were
recorded. These were analysed in conjunction with subjec-
tive, self-report measures of confidence combined with ad-
ditional perceptions of the virtual human during the inter-
actions. The study in this paper aims to clarify and extend
these results in the context of plan-based agent interaction
(albeit with a reduced scope of user inputs, due to the online
nature of the study).

As mentioned above, the task used in this work was in-
spired by the HCRC Map Task (Anderson et al. 1991) and
the GIVE Challenge (Byron et al. 2009). In (Koller and Pet-
rick 2011), the GIVE Challenge task was used to evaluate



whether classical planning was an effective approach to nat-
ural language generation. Their work focused on instruction
giving and did not consider explanations or managing an
interaction. In (Petrick and Foster 2013), they presented a
robot bartender that could successfully balance multiple si-
multaneous customers, using the knowledge-level PKS plan-
ner (Petrick and Bacchus 2002) to construct branched (con-
tingent) plans conditioned on the customer’s social states.
Our current work intends to inform future work in these sorts
of systems by gaining an understanding of a broader range of
human communication signals and how they can be utilised
to inform action selection.

Conclusion and Future Work
We intend to conduct a web-based user study to investigate
human response during interaction with a plan-based agent.
We have designed a simple bike sharing task that supports
our investigation of several important aspects of joint task
interaction, including knowledge difference and uncertainty.
Our study will compare two alternative agents: a reactive
agent, representing an initial interaction, and a more predic-
tive one, representing an agent that has knowledge of previ-
ous interactions. These agents together with careful map de-
sign ensure that the participants will be given the appropriate
information and experience the situations intended during
their interactions. We presented an empirical analysis, which
examines aggregated execution traces for different planning
configurations for each of the conditions that will be used in
the study. This includes results showing that the predictive
agent generates plans with fewer uncertain situations than
the reactive agent. After the intended user study has been
conducted and the data analysed, we hope to conduct a lab-
based study to gather additional biometric data (e.g., GSR
and eye movements), which is not practical during online
data collection. Our aim is to enhance our plan-based agent’s
world model using our improved understanding of human
behaviour, in order to enable the agent to respond reac-
tively to user signals, and harness the representational ben-
efits of approaches like epistemic planning (Bolander 2017;
Petrick and Bacchus 2002) in partially-observable domains.
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