A Middleware for Interfacing with Simulation Systems of
Multi-Agent Models

B.G.W. Craenen
School of Computer Science
University of Birmingham
Edgbaston, B15 2TT
Birmingham, United Kingdom
craenbgw@cs.bham.ac.uk

ABSTRACT

As multi-agent systems (MAS) are used increasingly often to
solve larger and more complex problems, distributed simu-
lation is emerging as the only viable approach to cope with
the resultant increased scale and complexity of MAS. While
different methods have been proposed for distributing these
simulations, the problem of interfacing a MAS with these
distributed methods remains just as important. In this pa-
per we use the PDES-MAS framework as a solution for dis-
tributing the MAS and propose a Middleware as an interface
between MAS and the PDES-MAS framework. The Middle-
ware supports designing and writing a MAS, translates in-
teractions between the shared state of agents to events that
the PDES-MAS framework can handle, and offers a number
of commonly used services in a MAS. Practical experience
with the Middleware thusfar has shown it to be an adapt-
able and efficient solution for designing and implementing
different MAS.

Categories and Subject Descriptors

C.2.4 [Distributed Systems]: Distributed applications;
1.6 [Simulation and Modelling]: Model development

General Terms

Distributed systems, Simulations, Multi-agent systems

Keywords

Middleware, parallel discrete event simulation, multi-agent
systems, interface

1. INTRODUCTION

Multi-Agent Systems (MAS) are commonly used to model
and solve problems that are either difficult or impossible for
an individual agent, or monolithic system to solve. Exam-
ples of problems appropriate for MAS research include online

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DlIstributed SImulation & Online gaming (DISIO) Barcelona, Spain -
March 21, 2011

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

V. Suryanarayanan
School of Computer Science
University of Birmingham
Edgbaston, B15 2TT
Birmingham, United Kingdom
vys@cs.bham.ac.uk

G.K. Theodoropoulos
School of Computer Science
University of Birmingham
Edgbaston, B15 2TT
Birmingham, United Kingdom
gkt@cs.bham.ac.uk

trading, disaster response, and modelling social structures.
The problems MAS are tasked to solve or model are becom-
ing increasing larger and more complex however, and the
computational resources required by the MAS to do so have
likewise increased to such an extend that they now often sur-
pass the resources available of even the biggest single com-
puter platforms. This has lead to research into distributing
MAS over multiple computer platforms, all working together
to solve or model the problem at hand.

Various approaches for distributing MAS over multiple
computer platforms have been proposed [14]. One such ap-
proach focuses on partitioning the simulation topology into
several semi-autonomous regions distributed over the com-
puting resources available. Another approach is to parti-
tion the shared state of the simulation using a Distributed
Shared Memory (DSM) system and distributing this over
the computing resources available. An example of the lat-
ter approach is the PDES-MAS framework [9]. These, and
other approaches all have specific advantages and limita-
tions, making them particularly appropriate for certain MAS
and problems, but less so for others. All however share the
problem of having to translate MAS behaviour or topology
into a format suitable to distribution using the approach
used.

This paper will investigate an interface between the MAS
in the format of an Agent-based Model (ABM) where the
MAS is distributed using the DSM approach, specifically
PDES-MAS. Conceptually this interface, which we will call
the Middleware, is located between the ABM on top, and
PDES-MAS at the bottom. The functionality of the Middle-
ware can then be described as translating the interactions
of agents in the MAS with the shared state as described by
the ABM into events that can be handled by PDES-MAS.
Likewise, however, specific return actions coming up from
the PDES-MAS to the ABM of the MAS need to be han-
dled as well, and this refers in particular to synchronisation
management of the shared state. In addition, the Middle-
ware has the purpose of hiding from the MAS the specific
architecture used to distribute it, so that the ABM of the
MAS can be developed independent from this architecture.

This paper is organised as follows. In the next section (2)
we will briefly discuss the MAS and the PDES-MAS frame-
work. In section 3 we will provide a detailed description of
the Middleware itself and in section 4 we discuss a use-case
of the Middleware as well as some practical issues. Finally,
the paper will provide some conclusions in section 5.

2. MAS AND PDES-MAS

A MAS simulation defines a number of agents that are as-
sumed to be intelligent, where the agents interact with each
other and with their environment, often also captured within
agents. In addition, a defining characteristic of agents is
their autonomy [15]. Because the agents act independently
and intelligently, based on information from its environment,
it is often hard to predict these interactions in advance. In-
deed discover them at all. Moreover, how the agents interact
with each other and the environment is often the primary
goal of the simulation. In conventional MAS, the agents go
through a so-called sense-think-act cycle. First the agent
gathers information about itself, other agents, and its envi-
ronment. This is then used to determine a (pre-described)
behaviour later to be translated into actions on itself, other
agents, or its environment. In this paper we assume that
over the life-time of the MAS simulation, agents go through
many of these cycles, and this defines the progression of time
as experienced by the agent.

Agents in a MAS simulation encapsulate a number of vari-
ables some of which are visible or public to, or shared with,
other agents, while others remain private and available only
to the agent itself. Values of all shared and private variables,
at each step in the agent’s time progression, determines the
state of the agent at that time. The collective state of the
shared variables can then be seen as similar to the MAS si-
mulation’s space-time memory [1, 10]. Shared variables offer
a natural representation of the simulation context when in-
teractions between agents are described as interactions on
these variables. As such, we assume that agents alter the
state of the MAS simulation by interacting with these shared
variables in an event-based fashion.

Space-time memory in distributed computing is commonly

made available across distributed computer platforms through

a DSM system, often without exposing the exact way in
which the memory is accessed or organised internally by
the DSM. Access to the shared memory is provided through
read and write operations performed as events, mirroring
our assumptions about the MAS given above. The read- and
write-events allow the reading of a value stored at a memory
address (called an ID-query) and write a value to a certain
memory-address (called an ID-write). Memory addressed
are allocated by the DSM and are specific, with indexing
over memory-addresses offered as a feature of the DSM.
Reading of values over a range of memory-addresses that
satisfy a condition (associative memory), is an extension of a
single read-event and is called a range-query. Range-queries
in a MAS are often used to retrieve aggregate information
during the sense-cycle of the information, e.g., retrieving the
location of all agents within viewing range [13].

In a MAS simulation, a DSMS system should provide
simultaneous distributed access to the shared data of the
simulation. And in this context, maintaining data consis-
tency is an important part of the functionality of the DSM
system. In distributed simulations, two main synchronisa-
tion mechanisms for maintaining data consistency can be
generally recognised: conservative synchronisation and op-
timistic synchronisation. Conservative synchronisation dis-
allows conflicting access to the data by predicting when con-
flicting access will occur and then apply strict access-rules
(preemptive locking) to the data. Optimistic synchronisa-
tion allows free access to the data at all times but repairs
data inconsistency afterwards through a roll-back mecha-

nism [5].

In this paper the PDES-MAS framework is used as an
implementation of a DSM system for MAS. PDES-MAS is
a framework for the distributed simulation of MAS [9]. It
implements a DSM structure where the shared state, i.e.,
the visible and publicly accessible attributes or variables of
the agents, is represented by Shared-State Variables (SSV).
SSVs are data-structures that store the time-stamped his-
tory of values of a particular variable over time [5]. Fol-
lowing the Parallel Distributed Event Simulation (PDES)
paradigm, agents in the MAS are assigned to Logical Pro-
cesses (LP), known as Agent Logical Processes (ALP), while
SSVs are assigned to Communication Logical Processes (CLP).
An ALP potentially models more than one agent, with mul-
tiple ALPs allowed concurrent access to the set of SSVs as-
sociated to the agents by connecting them to a tree-like net-
work of CLPs. SSVs are then distributed among the CLPs
in a scalable and balanced manner. Figure 1 shows a depic-
tion of the PDES-MAS framework with 4 ALPs, 3 CLPs,
and 4 SSVs.

Figure 1: The PDES-MAS framework.

The PDES-MAS framework allows SSV access through
time-stamped events along the lines described earlier for in-
teractions within a MAS simulation, i.e., within the sense-

cycle the PDES-MAS framework supports ID-query and Range-

query events, while during the act-cycle the PDES-MAS
framework supports write-events. ALPs are connected to
the leaf CLP nodes in the tree-like structure, and an ALP is-
sues SSV access events through its parent CLP. If the SSV is
not assigned to the parent CLP, the access request is passed
along the tree to the CLP where the SSV is located. The
return information is then passed back along the same route
in reverse, to the parent CLP and from there to the ALP.
Control messages internal to the PDES-MAS framework are

conveyed through the tree-like structure in a similar way.
Conceptually the ALP provides the access-node for the MAS
simulation to the PDES-MAS framework.

Synchronising the events received from the ALP is the
responsibility of the CLP. The PDES-MAS framework uses
optimistic synchronisation, the specifics of which have been
reported in [2, 4, 3, 5, 6, 7, 8]. In general, each SSV is as-
sociated with a list of Write Periods (WP), representing the
values of the variables at different times throughout the time
progression of the simulation. When a WP is invalidated by
a straggler write, any agents associated to the ALPs that
have read that WP subsequent to the straggler write will
be asked to roll-back to the time-stamp before the strag-
gler write. An agent that is rolled back is then supposed to
resume its time-progression from that time, using the now
consistent data. As such, the data consistency is repaired
for that time-stamp.

The CLP tree-like structure in the PDES-MAS frame-
work is reconfigured dynamically and automatically so as
to reflect the interaction patterns of the agents as exhib-
ited through the access patterns of the SSVs. SSVs that
are accessed most frequently are pressured to move closer in
the tree-like structure to the ALP handling that agent, i.e.,
towards the parent leaf CLP. The aim is to concurrently self-
organise the SSVs in the tree so as to minimise the average
number of hops required to access them, as well as to reduce
the load imbalance between the CLPs. Reconfiguration of
the CLP tree-like structure can be achieved by creating or
deleting CLPs, moving ALPs to different parent CLPs, or
by migrating SSVs between CLPs. In the PDES-MAS im-
plementation used in this paper, the CLPs are configured
in a fixed binary tree-structure with the leaf CLPs hosting
a fixed and constant number of ALPs. Only SSVs are mi-
grated through the tree to achieve redistribution [12].

3. THE MIDDLEWARE

The Middleware functions as the glue between the MAS
simulation and the PDES-MAS framework and serves three
overall goals: It provides a framework in which it is rela-
tively straightforward to design and build a MAS; It trans-
lates interactions between the agent’s shared state variables
into events for the PDES-MAS framework to handle; And it
provides a means for the agents in the MAS to handle return
events, from the PDES-MAS framework, like roll-backs, to
take effect in the MAS. Figure 2 depicts the overall archi-
tecture of the Middleware and we will be discussing further
below.

3.1 Distributed Object Template

The Middleware supports the design and development of a
MAS by providing an agent template. All agents in the MAS
are to implement the so-called Distributed Object Template.
The Middleware itself acts as the MAS counterpart of the
PDES-MAS framework’s ALP with several agents or distri-
buted objects handled by each ALP. In order for the PDES-
MAS framework’s ALP to associate SSVs to these agents, a
unique agent or distributed object identifier is maintained,
so that for the set of all agent identifiers A, each agent has
a unique identifier a € A. In addition, the various variables
associated with the agents in the MAS are defined and as-
sociated with a unique variable identifier, so that for the set
of all variable identifiers V', each variable has a unique iden-
tifier v € V. Each variable has associated with it a variable

Environment

is—a/uses

Agent

stel 1| step
adtfiJ %TjF) .
read a,v,y, 4
write {TIF}
range—query 4V t{@.¥). @.y) ...}}

nd-message|

Qet—messages

Private SE— Private
Statebase

roll-back ‘

(" Public Interface Public)

'Agent Logical Processes !
| T

T
@ @ PDES-MAS

Figure 2: The Middleware architecture.

type so that for the set of variable types X, each variable v
has a variable type x, € X. Time progression in the MAS
is defined by a set of increasing timestamps T where ¢, € T
is the time-stamp at time ¢ with 0 < ¢ < n where n is the
maximum time-stamp in 7" and also of the MAS.

3.2 Shared or Private Variables

Variables can be annotated as either public or shared, or
private and not-shared: v° or v™°, with v® equivalent to
an SSV in the PDES-MAS framework. There is no restric-
tion on whether a variable is shared or private over different
types of agents. Agents can, for example, have a public or
shared variable for one type of agent, while that same vari-
able is private and not shared for another type of agent.
All shared or public variables, or SSVs, are handled by the
PDES-MAS framework, while all private variables are main-
tained internally by the Middleware. To enforce this, the
agent template provided by the Middleware encapsulates all
interactions with all variables. All interactions, like adding
a variable, reading a variable, writing a variable, or perform-
ing a range-query over a variable, are encapsulated without
exception. It is this that allows the Middleware to deter-
mine whether the variable is declared public and thus pass
the interaction to the PDES-MAS framework, or whether
the variable is private and thus handle the interaction in the
Middleware itself.

The particular implementation of the PDES-MAS frame-
work itself poses a couple of constraints on a number of
interactions. Adding variables has to occur before the ex-
periment with the MAS begins, i.e., during the initialisa-
tion of the MAS. This to allow assignment of the SSVs
to the CLPs in the PDES-MAS framework. No variables
may be added to agents in the MAS after the MAS exper-
iment has started. In other words, the shared state space
of the simulation is fixed from the beginning to the end
of the simulation. As to the set of variable types (X) al-
lowed, our particular implementation allows integers (INT),

doubles (DOUBLE), strings of characters (STRING), and
a POINT-type where POINT is a tuple of two integers:
X = {INT,DOUBLE, STRING, POINT}. The PDES-MAS
framework can handle other variable-types as well, as its
internal handling of SSVs, including WPs, is variable-type
agnostic. But in generally this set of variable-types should
suffice for most MAS. The POINT-type is commonly used
to express the location of the agent in the MAS in a two
dimensional environment. The STRING-type is used, and
the agent template in the Middleware supports this explic-
itly, to provide a messaging system for the agents to use.
To this end, the agent or distributed object template uses
a special MESSAGES SSV as a message-box variable, and
provides access methods for this variable so that messages
received can be retrieved and send through the PDES-MAS
framework.

3.3 Agent interactions with PDES-MAS

The Middleware allows the agent to interact with variables
in four different ways: add, read, write, and range-query.

The add interaction allows an agent to add a variable to
its set of variables during initialisation. Adding public vari-
ables is passed onto the PDES-MAS framework while private
variables are handled in the Middleware itself. Where a is
the identifier of the agent adding the variable, v the variable
to be added, = the variable type of the variable to be added,
and t the time-stamp at which the variable is added (con-
strained to ¢t = 0 here), the add interaction can be described
as A(a,v,z,t) — {T|F}, with the interaction returning ei-
ther true (T') if the interaction was successful, or false (F)
otherwise ({T'|F'} representing the boolean set).

The read interaction allows an agent to read a variable,
either from its own set of variables, or from the set of pub-
lic variables. The read interaction returns the value stored
in either the PDES-MAS framework if the variable is pub-
lic, or the value stored in the Middleware if the variable is
not (private). Where a is the identifier of the agent reading
the variable, a’ the identifier of the agent in whose variable
set the variable is located (a = a’ is possible), v the vari-
able identifier, and t the time-stamp of the read interaction,
and y the value stored by the variable. As such, the read
interaction can be described as R(a,a’,v,t) — {a’,v,y,t}.

The write interaction allows an agent to write a value to
a variable, either to its own private variables (v € V° /) or
an agent’s public variables (v € V. .,/ 4—,/)- Again, private
variables are handled in the Middleware itself, public vari-
ables by the PDES-MAS framework. The write interaction
returns true (7') if the interaction is successful and false (F’)
otherwise. Where a is the identifier of the agent writing
the variable, a’ the identifier of the agent in whose variable
set the variable is located, v the variable identifier, y the
value of the variable (of type € X,) and ¢ the time-stamp
of the write interaction. The write interaction can then be
described as W(a,a',v,z,y,t) — {T|F}.

The range-query interaction allows an agent to discover
the identifiers of public variables satisfying a predicate. The
range-query interaction returns a list of all agent identifiers
associated with a value of the queried variable. Where a
is the identifier of the agent initiating the range-query in-
teraction, v the identifier of the range-queried variable, and
t the time-stamp of the range-query interaction, the range-
query interaction can be described as RQ(a,v,t) — {v,t :
(@',y),(a”,y),.... A constraint over the values applicable

for addition to the reset-set can be added, for example an
upper and lower bound (not depicted).

3.4 Scheduler

The PDES-MAS framework provides access to SSVs using
events that are timestamped. To support this, the Middle-
ware provides a time-progression service to the MAS. There
are two options for implementing this service of which the
latter is currently implemented. The first option is to have
each agent or distributed object in the MAS maintain its
own time-progression with the Middleware then providing
asynchronous access to the PDES-MAS framework. Al-
though this corresponds closely to the asynchronous nature
of the message passing design of the PDES-MAS framework,
it would also require the Middleware to copy this design with
all the required inter-agent synchronisation that that entails
(each agent would have its separate thread to maintain and
protect). Instead, the Middleware implements a synchro-
nised although distributed solution through the inclusion of
a Scheduler. The scheduler’s task is then to maintain a list
of all agents or distributed objects on a single ALP in the
PDES-MAS framework and call upon all agents in that list
to perform its sense-think-act cycle encapsulated in a step
method, thus providing time-progression and synchronisa-
tion. An advantage of such a synchronised design is that
there is a single entity that handles simulation control mes-
sages, like roll-back requests, about which more further on.
It also means that such a design leads to two different time-
progression mechanisms having to cooperate closely. On the
one hand there is the progression of time according to the
agent itself, to be used as a time-stamp for PDES-MAS
framework events. On the other hand there is the time-
progression according to the scheduler itself based on the
times it calls the agent’s sense-think-act cycle. The latter
however is exclusively internal, with no explicit need to be
known by the MAS. A further advantage to the centralised
scheduler design is that the scheduler can be accessed to
provide data about an agent’s state for generating results or
analysis of the MAS itself. In a design without a centralised
scheduler this would have to be provided through polling
the agents individually, or through some other service added
specifically for this. With the centralised scheduler design,
the scheduler polls the agents in the MAS for the user, with
the user only required to provide a means of collecting the
results.

3.5 Interface

Access from the Middleware to the PDES-MAS frame-
work is provided by the Interface. The Interface can be seen
as consisting of two parts: one connected to the Middleware,
and another connected to the PDES-MAS framework. En-
capsulating variable interactions in the agent or allows the
Middleware to redirect the appropriate events to the part of
the interface that is connected to the Middleware. That part
of the interface is infrastructure agnostic, in that it has no,
and needs no, knowledge of the underlying infrastructure the
PDES-MAS framework. Methods in this part of the infras-
tructure reflect the interaction types as encapsulated in the
agent template: adding variables, reading variables, writing
variables, and performing range-queries. Information to use
these methods is maintained in the Middleware itself: agent
identifier, variable identifier, variable type, time-stamp, and
so forth (see above). The part of the interface connected

to the PDES-MAS framework implements an ALP in the
PDES-MAS framework and this requires it to be infrastruc-
ture aware. This part of the interface interacts with its par-
ent CLP, using the message passing mechanism used inter-
nally in the PDES-MAS framework. Internally the interface
needs to translate variable interaction events into messages
to be passed along to the parent CLP in the PDES-MAS
framework and wait for a response from the PDES-MAS
framework. When the interface receives the response it is
translated into an appropriate response for the agent to use.

For example: a read interaction in the sense-cycle of an
agent is encapsulated in a get-method in the agent template
in the Middleware. If the variable is public, this interaction
is passed along to the interface together with information
as to which agent the variable wants to read it, to which
agent the variable belongs, which variable is to be read, and
at which time-stamp (that of the agent itself). The inter-
face turns this event into a ID query message, passes this
to its parent CLP, and waits for a response-message. Upon
receiving the response-message, the read value for the time-
stamp in the PDES-MAS framework, stored in the response-
message, is then turned into a return value for the get-
method call by the agent and passed along to it. All other
interactions go through a similar translate-to and translate-
back process in the interface.

3.6 Roll-backs and Statebase

The example given above describes the process of a nor-
mal event. There is an exception to this process, and this
occurs when the PDES-MAS framework issues a roll-back re-
quest instead of a response-message. Roll-back requests are
issued when a straggler write has occurred. This is a write
event that invalidates read (and range-query) events that
happened after the time-stamp of the write event. PDES-
MAS uses an optimistic synchronisation strategy in which
events invalidated by a straggler write event need to be re-
paired, or, rolled-back. The term roll-back can be explained
by the need for the agent to roll back in time to the time-
stamp before the invalidating event was issued. From that
time-stamp it has to continue with the now consistent SSV
value. As such, when a straggler-write occurs, the PDES-
MAS framework sends roll-back requests to all agents that
have read the now altered variable.

Roll-back requests issued by the PDES-MAS framework
and received by the Middleware can pertain to either the
agent currently issuing events, or another agent altogether.
Both cases have to be handled, and both are handled differ-
ently. In the case where the agent currently issuing events
needs to be rolled back, the current sense-think-act cycle
has to be interrupted. In the case where the agent is not
currently issuing event, no interruption of the sense-think-
act cycle is required. The interface of the Middleware is
extended to handle both cases correctly, i.e., in both cases
the roll-back request is translated correctly. Where a is the
identifier of the agent to be rolled-back and ¢ the time-stamp
to which the agent has to be rolled back, a rollback request
can be described as: RB(a,t). Given that the PDES-MAS
framework itself maintains data consistency for the SSVs, or
public variables, the Middleware needs only to roll-back the
private variables maintained there. In order to do so, the
Middleware maintains a statebase for those variables similar
to the Write-Period design as maintained by the PDES-MAS
framework. Encapsulation of the variable interactions in the

distributed object allows maintenance of the statebase to oc-
cur opaque to the designer and developer of the MAS. Note
that only shared variables can have straggler writes, and as
such, no roll-back requests will ever be issued from private
variables maintained by the Middleware.

4. THE MWGRID USE-CASE

The Middleware is being used and experimented with in
the context of the MWGrid project. The MWGrid project
([11]) is a collaborative project between the Institute of
Archeology and Antiquity and the School of Computer Sci-
ence at the University of Birmingham. It seeks to address
the problems associated with early military logistics through
agent-based modelling and distributed simulations. In me-
dieval states the need to collect and distributed resources
to maintain armies affected all aspects of the political or-
ganisation of the state. And at critical times, when armies
failed, the results of a failure could prove disastrous to so-
ciety. Despite this, even though military activity in terms
of resource allocation and consumption is decisive in shap-
ing pre-modern societies, military studies seldom progress
past the study of existing texts to bear out the pragmatic
consequences of military behaviour.

In this context, the MWGrid project explores the military-
logistical context of the Battle of Manzikert in 1071, a key
historic event in Byzantine history. The defeat of the Byzan-
tine army by the Seljuk Turks, and the following civil war,
resulted in the collapse of Byzantine power in central Ana-
tolia. In the MWGrid project the Middleware and PDES-
MAS framework combination was used to design and build
a MAS for modelling the implications for pre-industrial so-
cieties of marching a large medieval army across the breadth
of the Anatolian mainland of the Byzantine empire. Agents
in the MAS represent all participants of the army from the
emperor down to the individual soldier, all by extending
the agent template provided by the Middleware. Agent and
environment attributes and variables are based on detailed
historical and geological analysis (see [11] for more details
of the model). The MAS based on the Middleware and
PDES-MAS framework combination allows running what-
if scenarios with different configurations and, for example,
army sizes. The result of these experiment are expected to
have significant implications for the study of pre-industrial
societies in methodological and theoretical terms, and will
benefit academics with an interest in comparative military
history, the cultural role of military organisation and the
relationship of historical and modelled data.

Although experimentation and performance analysis is still
ongoing, in the MWGrid project we found the Middleware to
be an adaptable and efficient solution for designing and im-
plementing the MWGrid MAS. Within the MWGrid project,
we used the Middleware to design a series of ever more com-
plex MAS, suggesting that the Middleware provides a solu-
tion not just for designing and implementing the MWGrid
MAS, but for MAS in general. The Middleware hides a
great deal of specific PDES-MAS framework or DSM de-
pendencies, so that designing a MAS with the Middleware
is generally concentrated on designing the agents themselves,
providing the environment they live in, and defining the in-
teractions they have with themselves or this environment.

The Middleware proved to be quite adaptable as it allowed
us to design and develop a series of ever more complex MAS
without the need for changes to the Middleware itself. In

addition, because of the modular design of the interface part
of the Middleware, it should be relatively easy to adapt the
Middleware to support other DSMs besides the PDES-MAS
framework, and do so without having to adapt to majority
of the Middleware itself, or the MAS using it. Although
the latter was not required in the MWGrid project, the ease
with which it was possible to extend the Middleware with a
sequential substitute of a DSM shows its potential. There
are ofcourse limitations, for example, the Middleware still
expects that the underlying DSM uses an optimistic syn-
chronisation methods using roll-backs.

In this respect it is worth mentioning that most of the
Middleware, and the MWGrid MAS were developed in Java,
while the interface was developed in as a JAVA-JNI interface
to provide the connection with the C++4 implementation of
the PDES-MAS framework.

The Middleware also proved to be an efficient solution.
Preliminary measurements showed that on average, time
spend on the various functions of the Middleware was neg-
ligible compared to the time spend required by the various
functions in the MAS, or by the PDES-MAS framework for
that matter. The most costly function of the Middleware is
the maintenance of the private variables but even there the
Middleware showed itself to be very efficient indeed. A more
indepth performance analysis of the Middleware is expected
to be published shortly.

The specific implementation used in the Middleware, with
a centralised scheduler calling step-functions, does however
mean that a waiting period is incurred in the Interface. How
the agents are distributed among the different nodes, and
how the architecture is configured over the distributed plat-
form, has a direct effect on the performance of the system,
as is to be expected. Overloaded nodes handling too many
agents in the Middleware, or handling too many SSVs in
the PDES-MAS framework, have an adverse effect on the
performance of the system as a whole and this is reflected
in the wall-clock time needed to run the experiment. Care-
ful design of the distributed platform architecture and the
dynamic load-balancing done within the PDES-MAS frame-
work do mitigate these adverse effects however.

5. CONCLUSION

As MAS are used increasingly often to solve larger and
more complex problems, distributed simulation is emerging
as the only viable approach to cope with the resultant in-
creased scale and complexity of MAS simulations. One of
the pivotal questions that requires answering is how to dis-
tribute the MAS over multiple computational platforms in
an efficient and effective way. One answer to this question is
to distribute the shared state of the agents of the MAS over
the different computational platforms. Several ways of doing
so have been proposed, and in this paper we use an imple-
mentation of the PDES-MAS framework. What remains is
a means of designing and building a MAS using the PDES-
MAS framework and in this paper we explore a solution to
this problem called the Middleware.

The Middleware provides an agent template that can be
extended to straightforwardly implement the agents in a
MAS. In addition it is used to translate agent interactions,
like add, read, write, and range-query interactions into events
that can be issued directly to the PDES-MAS framework.
It also provides services for maintaining time-progression for
the agents in the MAS as well as handling specific features of

the PDES-MAS framework, like roll-back requests. In gen-
eral the Middleware provides these functions in a way that
is both efficient and effective and it has already been used
in the MWGrid Project at the University of Birmingham
[11]. During the MWGrid project, the Middleware showed
itself to be an adaptable and efficient solution for design-
ing and implementing a variety of MAS. Experiments are
currently being conducted to evaluate the Middleware and
quantify the overhead it induces to the overall performance
of the simulation. An in-depth performance analysis of the
Middleware is expected to be published shortly.

6. REFERENCES

[1] K. Ghosh and R. M. Fujimoto. Parallel discrete event
simulation using space-time memory. In Proceedings of
the International Conference on Parallel Processing,
Volume III, Algorithms € Applications, pages
201-208, 1991.

[2] M. Lees, B. Logan, C. Dan, T. Oguara, and
G. Theodoropoulos. Decision-theoretic throttling for
optimistic simulations of multi-agent systems. In
A. Boukerche, S. J. Turner, D. Roberts, and
G. Theodoropoulos, editors, Proceedings of the Ninth
IEEE International Symposium on Distributed
Simulation and Real Time Applications (DS-RT
2005), pages 171-178, Montreal, Quebec, Canada, Oct
2005. IEEE Press.

[3] M. Lees, B. Logan, C. Dan, T. Oguara, and
G. Theodoropoulos. Analysing probabilistically
constrained optimism. In E. Alba, S. J. Turner,

D. Roberts, and S. J. Taylor, editors, Proceedings of
the 10th IEEE International Symposium on
Distributed Simulation and Real Time Applications
(DS-RT 2006), pages 201-208, Malaga, Spain, Oct
2006. IEEE Press.

[4] M. Lees, B. Logan, C. Dan, T. Oguara, and
G. Theodoropoulos. Analysing the performance of
optimistic synchronisation algorithms in simulations of
multi-agent systems. In Proceedings of the 20th
Workshop on Principles of Advanced and Distributed
Simulation (PADS06), pages 37-44, Washington, DC,
USA, 2006. IEEE Computer Society.

[5] M. Lees, B. Logan, and G. Theodoropoulos. Adaptive
optimistic synchronisation for multi-agent simulation.
In D. Al-Dabass, editor, Proceedings of the 17th
European Simulation Multiconference (ESM 2003),
pages 77-82, Delft, 2003. Society for Modelling and
Simulation International and Arbeitsgemeinschaft
Simulation, Society for Modelling and Simulation
International.

[6] M. Lees, B. Logan, and G. Theodoropoulos. Time
windows in multi-agent distributed simulation. In
Proceedings of the 5th EUROSIM Congress on
Modelling and Simulation (EuroSim04), Paris, Sep
2004.

[7] M. Lees, B. Logan, and G. Theodoropoulos. Using
access patterns to analyze the performance of
optimistic synchronization algorithms in simulations of
mas. Transactions of the Society for Computer
Simulation International, 84:481-492, 2008.

[8] M. Lees, B. Logan, and G. Theodoropoulos. Analysing
probabilistically constrained optimism. Concurrency

[12]

[14]

[15]

and Computation: Practice and Ezperience Journal,
special issue on Distributed Simulation, Virtual
Environments and Real Time Applications,
21:1467-1482, Aug 2009.

B. Logan and G. Theodoropoulos. The distributed
simulation of multi-agent systems. In Proceedings of
the IEEE, volume 89, pages 174-186, Feb 2001.

H. Mehl and S. Hammes. Shared variables in
distributed simulation. In Proceedings of the Seventh
Workshop on Parallel and Distributed Simulation
(PADS’93), pages 6875, 1993.

P. Murgatroyd, V. Gaffney, B. Craenen,

G. Theodoropoulos, V. Suryanarayanan, and

J. Haldon. Logistics: A case of distributed agent-based
simulation. In Proceedings of the Distributed
Simulation & Online Gaming Conference (DISIO
2010), Torremolinos, Spain, Mar 2010. ACM Digital
Library.

T. Oguara, D. Chen, G. Theodoropoulos, M. Lees,
and B. Logan. An adaptive load management
mechanism for distributed simulation of multi-agent
systems. In The 9-th IEEE International Symposium
on Distributed Simulation and Real Time Applications
(DSRT 2005), pages 179-186, Montreal, Oc. Canada,
Oct 2005.

V. Suryanarayanan, R. Minson, and

G. Theodoropoulos. Synchronised range queries in
distributed simulations of multi-agent systems. In 13th
IEEE International Symposium on Distributed
Simulation and Real Time Applications (DS-RT
2009), Singapore, Oct 2009.

G. Theodoropoulos, R. Minson, R. Ewald, and

M. Lees. Simulation engines for multi-agent systems.
Multi-Agent Systems: Simulation and Applications,
pages 77-108, 2007.

M. Wooldridge and N. R. Jennings. Intelligent agents:
Theory and practice. Knowledge Engineering Review,
10:115-152, 1995.

